Space - Use of GNSS-based positioning for road Intelligent Transport Systems (ITS) - Part 4 : Definitions and system engineering procedures for the design and validation of test scenarios

Scope of this NWI is to give keys and to propose methods to GNSS-specialized laboratories, enabling them to design and produce valuable scenario using the "record and replay" technique in order to assess GNSS-based positioning system.
Already published parts (1-2-3) are mainly dedicated to respectively :
-Definitions and system engineering procedures for the establishment and assessment of performances
-Assessment of basic performances of GNSS-based positioning terminals
-Assessment of security performances of GNSS-based positioning terminals
Part4- Definitions and system engineering procedures for the design and validation of test scenarios- will be based on outcomes from GPSTART2 (SA-CEN/2018-12) which was funded by EC to tackle this specific focus (among others).

Raumfahrt - Anwendung von GNSS-basierter Ortung für Intelligente Transportsysteme (ITS) im Straßenverkehr - Teil 4: Definitionen und systemtechnische Verfahren für den Entwurf und die Validierung von Testszenarien

Dieses Dokument wendet sich hauptsächlich an Laboratorien, die auf GNSS spezialisiert und für die Erstellung von Referenz-Prüfszenarien zur Wiedergabe durch andere Benutzer wie universell aufgestellte HF-Labore zuständig sind. Es ist ein grundlegender Schwerpunkt, in der Lage zu sein, einheitliche Prüfszenarien bereitzustellen. Tatsächlich muss der Prozess selbst, im Kontext der Zertifizierung des GNSS-Empfängers, unabhängig von dem Laboratorium sein, das das Szenario ausgelegt und erstellt hat. In anderen Worten ist der Grad der Konformität jedes GNSS-basierten Ortungsendgeräts (GBPT) der gleiche, welches konkrete Szenario auch verwendet wird. Die Verwendung eines bestimmten Stadtszenarios von einem auf GNSS spezialisierten Laboratoriums A muss zu der gleichen Schlussfolgerung führen wie die Verwendung eines anderen bestimmten Stadtszenarios von einem auf GNSS spezialisierten Laboratorium B. Dies ist das wirkliche Ziel dieses Dokuments: allen auf GNSS spezialisierten Laboratorien Anforderungen und Richtlinien für die Erstellung von interoperablen Prüfszenarien zu geben.
Deshalb stellt es Anforderungen und Richtlinien zu folgenden Themen zur Verfügung:
[...]

Espace - Utilisation du positionnement GNSS pour les systèmes de transport routier intelligents (ITS) - Partie 4: Définitions et procédures d'ingénierie système pour la conception et la validation de scénarios d'essai

Vesolje - Uporaba sistemov globalne satelitske navigacije (GNSS) za ugotavljanje položaja pri inteligentnih transportnih sistemih (ITS) v cestnem prometu - 4. del: Opredelitve in postopki sistemskega inženiringa za načrtovanje in potrjevanje preskusnih scenarijev

General Information

Status
Not Published
Public Enquiry End Date
10-Oct-2023
Technical Committee
Current Stage
4020 - Public enquire (PE) (Adopted Project)
Start Date
26-Jul-2023
Due Date
13-Dec-2023

Buy Standard

Draft
prEN 16803-4:2023 - BARVE
English language
109 pages
sale 10% off
Preview
sale 10% off
Preview
e-Library read for
1 day

Standards Content (Sample)

SLOVENSKI STANDARD
oSIST prEN 16803-4:2023
01-september-2023
Vesolje - Uporaba sistemov globalne satelitske navigacije (GNSS) za ugotavljanje
položaja pri inteligentnih transportnih sistemih (ITS) v cestnem prometu - 4. del:
Opredelitve in postopki sistemskega inženiringa za načrtovanje in potrjevanje
preskusnih scenarijev
Space - Use of GNSS-based positioning for road Intelligent Transport Systems (ITS) -
Part 4 : Definitions and system engineering procedures for the design and validation of
test scenarios
Raumfahrt - Anwendung von GNSS-basierter Ortung für Intelligente Transportsysteme
(ITS) im Straßenverkehr - Teil 4: Definitionen und systemtechnische Verfahren für den
Entwurf und die Validierung von Testszenarien
Espace - Utilisation du positionnement GNSS pour les systèmes de transport routier
intelligents (ITS) - Partie 4: Définitions et procédures d'ingénierie système pour la
conception et la validation de scénarios d'essai
Ta slovenski standard je istoveten z: prEN 16803-4
ICS:
03.220.20 Cestni transport Road transport
33.060.30 Radiorelejni in fiksni satelitski Radio relay and fixed satellite
komunikacijski sistemi communications systems
35.240.60 Uporabniške rešitve IT v IT applications in transport
prometu
oSIST prEN 16803-4:2023 en,fr,de
2003-01.Slovenski inštitut za standardizacijo. Razmnoževanje celote ali delov tega standarda ni dovoljeno.

---------------------- Page: 1 ----------------------
oSIST prEN 16803-4:2023

---------------------- Page: 2 ----------------------
oSIST prEN 16803-4:2023


EUROPEAN STANDARD DRAFT
prEN 16803-4
NORME EUROPÉENNE

EUROPÄISCHE NORM

July 2023
ICS

English version

Space - Use of GNSS-based positioning for road Intelligent
Transport Systems (ITS) - Part 4 : Definitions and system
engineering procedures for the design and validation of
test scenarios
Espace - Utilisation de la localisation basée sur les Raumfahrt - Anwendung von GNSS-basierter Ortung
GNSS pour les systèmes de transport routiers für Intelligente Transportsysteme (ITS) im
intelligents - Partie 4: Définitions et procédures Straßenverkehr - Teil 4: Definitionen und
d'ingénierie système pour la conception et la validation systemtechnische Verfahren für den Entwurf und die
des scénarios de test Validierung von Testszenarien
This draft European Standard is submitted to CEN members for enquiry. It has been drawn up by the Technical Committee
CEN/CLC/JTC 5.

If this draft becomes a European Standard, CEN and CENELEC members are bound to comply with the CEN/CENELEC Internal
Regulations which stipulate the conditions for giving this European Standard the status of a national standard without any
alteration.

This draft European Standard was established by CEN and CENELEC in three official versions (English, French, German). A
version in any other language made by translation under the responsibility of a CEN and CENELEC member into its own language
and notified to the CEN-CENELEC Management Centre has the same status as the official versions.

CEN and CENELEC members are the national standards bodies and national electrotechnical committees of Austria, Belgium,
Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy,
Latvia, Lithuania, Luxembourg, Malta, Netherlands, Norway, Poland, Portugal, Republic of North Macedonia, Romania, Serbia,
Slovakia, Slovenia, Spain, Sweden, Switzerland, Türkiye and United Kingdom.

Recipients of this draft are invited to submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.Recipients of this draft are invited to submit, with their comments, notification
of any relevant patent rights of which they are aware and to provide supporting documentation.

Warning : This document is not a European Standard. It is distributed for review and comments. It is subject to change without
notice and shall not be referred to as a European Standard.

---------------------- Page: 3 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
Contents Page

European foreword . 4
Introduction . 5
1 Scope . 7
2 Normative references . 8
3 Terms, definitions and acronyms . 8
3.1 Terms and definitions . 8
3.2 Acronyms . 10
4 Technical documentation for designing scenario . 11
4.1 Technical documentation for “R&R” . 11
4.1.1 General. 11
4.1.2 Expression of needs . 12
4.1.3 Test specifications . 12
4.1.4 Test plan . 13
4.1.5 Field test condition and validation . 29
4.2 List of documents to produce for simulation scenario . 31
4.2.1 General. 31
4.2.2 Types of scenarios to produce (on “R&R” base or manual for simulators) . 31
4.2.3 Technical documentation . 32
5 Requirements for collecting data . 36
5.1 Identification of the technical documentation . 36
5.1.1 General. 36
5.1.2 Test plan . 36
5.1.3 Technical documentation on instruments . 36
5.1.4 Field test validation . 36
5.2 Requirements for human resources . 36
5.3 Requirements for tests platform . 37
5.3.1 Representativeness of the platform . 37
5.3.2 Installation requirements . 38
5.4 Requirements for RTMeS . 39
5.4.1 General. 39
5.4.2 Type of data . 41
5.4.3 Inertial navigation system requirements . 41
5.5 Requirement for GNSS signals digitization . 49
5.5.1 General. 49
5.5.2 IQ data format . 50
5.5.3 Signals digitizer properties . 50
5.5.4 Signals digitizer installation and RF components . 53
5.5.5 Choice of the antenna . 53
5.6 Requirements for GNSS constellations simulator . 53
5.7 Requirements for benchmark GNSS receiver . 54
5.8 Requirement for GBPT embedded . 55
5.9 Requirements for other sensors. 56
5.9.1 General. 56
2

---------------------- Page: 4 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
5.9.2 Initial sensors . 56
5.9.3 Optical sensors . 57
5.9.4 GNSS augmentation/correction data . 58
5.10 Requirements for control video . 58
6 Requirements for data validation . 59
6.1 Validation of the field test . 59
6.2 Validation of data for reference trajectory . 60
6.2.1 General . 60
6.2.2 Validation of GNSS data . 61
6.2.3 Validation of inertial measurements and hybridized trajectory . 63
6.2.4 Estimation of the uncertainties . 64
6.3 Validation of digitized GNSS signals . 65
6.3.1 General . 65
6.3.2 Analysis of RF signals power . 66
6.3.3 Analysis of effects on benchmark GNSS receiver . 68
6.4 Validation of sensors inertial measurements . 74
6.5 Validation of corrections data (NRTK, PPP…) . 77
6.6 Characterization of the scenario . 78
6.6.1 General . 78
6.6.2 Dynamics analysis . 79
6.6.3 GNSS measurements analysis . 80
Annex A (informative) Impact of multi-constellation on RTK results . 83
Annex B (normative) PPK or NRTK data validation . 87
Annex C (normative) Inertial measurements and hybridized trajectory validation . 91
Annex D (informative) How lever arms error could affect final reference trajectory . 96
Annex E (normative) Impact of C/N0 difference on measurements availability . 100
Annex F (normative) Scenario characterization example . 102
Bibliography . 109


3

---------------------- Page: 5 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
European foreword
This document (prEN 16803-4:2023) has been prepared by Technical Committee CEN/TC 5 “Space”, the
secretariat of which is held by DIN.
This document is currently submitted to the CEN Enquiry.
EN 16803, Space — Use of GNSS-based positioning for road Intelligent Transport Systems (ITS),
consists of the following parts:
— Part 1: Definitions and system engineering procedures for the establishment and assessment of
performances;
— Part 2: Assessment of basic performances of GNSS-based positioning terminals;
— Part 3: Assessment of security performances of GNSS-based positioning terminals;
— Part 4: Definitions and system engineering procedures for the design and validation of test
scenarios.
This document has been prepared under a mandate given to CEN by the European Commission and the
European Free Trade Association.
4

---------------------- Page: 6 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
Introduction
The EN 16803 series of CEN-CENELEC standards deals with the use of GNSS technology in the
intelligent transport domain and addresses more particularly the issue of performance assessment.
As recalled in the following Figure 1, the generic functional architecture of a road ITS system based on
GNSS, two main sub-systems can be considered: the positioning system [GNSS-based positioning
terminal (GBPT) + external terrestrial sources of data] and the road ITS application processing the
position quantities output by the terminal to deliver the final service to the user.
EN 16803 tends to give keys in order to assess the whole positioning-based road ITS system.

Figure 1 — Generic functional architecture of a road ITS system based on GNSS
The scope of relevance of the different parts of the EN 16803 series is reminded hereafter:
— EN 16803-1 standard proposes a method called “sensitivity analysis” to assess the adequacy of the
GBPT’s performances to the end-to-end performance of the road ITS system. In addition, this first
EN defines the generic architecture, the generic terms and the basic performance metrics for the
Positioning quantities. EN 16803-1 can be of interest for many different stakeholders but is
targeting mainly the ITS application developers;
— EN 16803-2 proposes a test methodology based on the replay in the lab of real data sets recorded
during field tests, assuming no security attack during the test;
— EN 16803-3, proposes a complement to this Record and Replay (R&R) test methodology to assess
the performance degradation when the GNSS signal-in-space (SIS) is affected by intentional or
unintentional radio-frequency (RF) perturbations. Next sections below stress the importance of
this assessment in the context of the security threats.
These two ENs (part 2 and part 3) are mainly targeting the generalist RF test laboratory that will be in
charge of assessing the performances of GBPTs for different applications using replay techniques.
This document, EN 16803-4, describes the methodology needed for the record of the real data sets and
is targeting mainly the GNSS-specialized test laboratories that will be in charge of elaborating the test
scenarios.
5

---------------------- Page: 7 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
Important note on EN ISO/IEC 17025 standard:
EN 16803 has the scope to define the methodology for the certification of performances of GBPT for
road intelligent transport.
Intrinsically, this statement means that any laboratory working either for the creation of the scenario or
for the evaluation of the GBPT, using the created scenario, should be accredited EN ISO/IEC 17025
norm with the suitable scopes. However, even if EN ISO/IEC 17025 can be mentioned in this document,
authors remind here that EN 16803 series (especially this current part 4) can be used outside of the
scope of EN ISO/IEC 17025. However, users of EN 16803 have still to keep in mind that producing
certified test results will always be more meaningfulness when being accredited.
6

---------------------- Page: 8 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
1 Scope
This document is mainly addressed to GNSS-specialized laboratories, in charge of creating reference
test scenarios that will be replayed by other users such as generalist RF lab. It is a fundamental key-
point to be able to deliver homogenous test scenarios. Indeed, in the context of GNSS receiver
certification, the process itself has to be independent from the laboratory which design and made the
scenario. In other words, the conformity level of any GNSS-based positioning terminal (GBPT) is the
same whatever the specific scenario used. Using a specific urban scenario from a GNSS-specialized
laboratory A has to lead to the same conclusion as using another specific urban scenario from a GNSS-
specialized laboratory B. This is really the aim of this document: giving requirements and guidelines to
all GNSS-specialized laboratories in order to make inter-operable test scenarios.
It will thus provide requirements and guidelines on the following topics:
— what technical documentations are required to design test scenarios (Clause 4) through:
o technical documentation for “R&R”,
o list of documents to produce for simulation scenario;
— how to collect data in order to build test scenarios (Clause 5) through:
o identification of the technical documentation,
o requirements for human resources,
o requirements for tests platform,
o requirement for RTMeS,
o requirement for GNSS signals digitization,
o requirements for GNSS constellations simulator,
o requirements for benchmark GNSS receiver,
o requirement for GBPT embedded,
o requirements for other sensors;
— how to validate data –after a data collection– in order to be sure of it (Clause 6) through:
o validation of the field test,
o validation of data for reference trajectory,
o validation of digitized GNSS signals,
o validation of SENSORS inertial measurements,
o validation of corrections data (NRTK, PPP…),
o characterization of the scenario.
7

---------------------- Page: 9 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
EN 16803-1:2020, Space - Use of GNSS-based positioning for road Intelligent Transport Systems (ITS) -
Part 1: Definitions and system engineering procedures for the establishment and assessment of
performances
EN 16803-2, Space - Use of GNSS-based positioning for road Intelligent Transport Systems (ITS) - Part 2:
Assessment of basic performances of GNSS-based positioning terminals
3 Terms, definitions and acronyms
3.1 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https://www.iso.org/obp/
— IEC Electropedia: available at https://www.electropedia.org/
3.1.1
GNSS-based positioning terminal
GBPT
component that basically outputs PVT
3.1.2
hybridized GNSS-based positioning terminal
H-GBPT
GBPT using at least another additional sensor (different from a GNSS receiver) to compute position
EXAMPLE It could be an inertial sensor for instance.
3.1.3
device under test
DUT
device that is assessed
Note 1 to entry: in the context of EN 16803-2 and EN 16803-4, DUT refers to GBPT.
8

---------------------- Page: 10 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
3.1.4
test scenario
scenario composed of GNSS SIS data and potential sensor data resulting from field tests, complemented
by a metadata description file. A test scenario is a non-empty combination of UTS that allows to assess a
GBPT in the desired environments
Note 1 to entry: data inside a test scenario are raw data, either RF signals from GNSS satellites, or raw data from
other embedded sensors.
Note 2 to entry: a test scenario is the whole package that a GNSS-specialized test laboratory delivers to a
Generalist RF test laboratory in charge of performance assessment tests according to the EN 16803 series.
Note 3 to entry: considering the 6 different environments as defined in EN 16803-1, there is a combination of
2^6-1 = 63 possible test scenarios; from let‘s say ―rural only‖ test scenario up to ―all environment‖ test scenario
that covers the 6 different environments. See subclause 4.2.2 of EN 16803-2 for more details.
3.1.5
unitary test scenario
UTS
elementary brick of a test scenario, resulting from a specific field test. In other words, a test scenario is
composed of a concatenation of several unitary test scenarios
Note 1 to entry: see subclause 4.2.2 of EN 16803-2 for more details.
3.1.6
uniform environment data set
UEDS
output of the DUT collected after a replay in laboratory sorted by environment. It is a concatenation of
the output of the DUT for all UTS restricted to a unique environment
Note 1 to entry: see subclause 6.5 of EN 16803-2 for more details.
Note 2 to entry: considering the 6 different environments as defined in EN 16803-1, there is the same number of
UEDS; i.e. 6.
Note 3 to entry: data composing a uniform environment data set are PVT data, as they are output by a GBPT.
Note 4 to entry: uniform environment data sets are the data sets to which the metrics shall be applied to assess
the performances of the device under test.
3.1.7
GNSS-specialized laboratory
laboratory in charge of producing test scenarios for generalist RF test laboratories
3.1.8
generalist RF test laboratory
laboratory in charge of assessing the performances of GBPTs thanks to test scenario
3.1.9
real time kinematic
RTK
differential GNSS technique enabling high precision positioning thanks to the use of corrections send by
a close base (GNSS receiver). It requires the rover and the base receiver to be quite close (maximum
20 km) for optimal performances
9

---------------------- Page: 11 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
3.1.10
networked real time kinematic
NRTK
same technique used in RTK but relying on a network of base stations normally having 60 km/70 km
distance among them. Typically, corrections are provided by a service relying on online servers (NTRIP
service), creating a virtual station close to user according to its positions
3.1.11
precise point positioning
PPP
global augmentation service providing corrections for satellites positions and clock. It enables high
precision positioning for multi-frequency GNSS receiver without the need of close station providing
corrections
3.2 Acronyms
Acronym Description
CDF Cumulative distribution function
DUT Device under test
GBPT GNSS-based positioning terminal
GNSS Global navigation satellite system
HGBPT or H-GBPT Hybridized GNSS-based positioning terminal
IMU Inertial measurements unit
INS Inertial navigation system
KPI Key points of interest
ODO Odometer unit
NRTK Networked real time kinematic
PPK Post-processing kinematic
PPP Precise point positioning
PVT Position velocity and time
R&R Record and replay
RMS Root Mean Square
RF Radio frequency
RINEX Receiver independent exchange format
RTK Real time kinematic
RTMeS Reference trajectory measurements system
Rx Receiver
VSWR Voltage standing wave ratio
10

---------------------- Page: 12 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
4 Technical documentation for designing scenario
4.1 Technical documentation for “R&R”
4.1.1 General
To perform field tests, either for data collection or live test of a DUT, is quite a complex operation
requiring high levels of skills, professional instruments and validated software and methodologies:
1. human resources: realization of field tests on GBPT, or data collection for scenario creations, shall
be planned, supervised and analysed by people having a verified knowledge about the satellite
navigation (geolocation techniques) and GNSS metrology;
2. hardware: evaluation of DUT performances, directly or through R&R technique, requires having a
very precise reference trajectory for the comparison. Considering all possible classes of GBPT the
reference trajectory shall derive from high-level instrumentation (GNSS Rx INS ODO) providing the
best possible accuracy;
3. software: the hardware part alone, however, it is not sufficient for the derivation of the most
accurate reference trajectory (example of a backward algorithm). In the same way, the used
software shall be validated to be sure that all data can be processed correctly, i.e. without errors
(PPK, Hybridization)
Considering the complexity and requirements associated with the field test executions, a detailed test
plan shall be draft provide all information stated in the previous 3 bullets.
Besides, other information shall be provided for the scenario to meet the requirements of the
EN 16803-1 and the EN 16803-2:
— description of trajectory;
— expected test environments and/or characterized obstacles;
— types of data to be collected;
— classes of GBPT to test;
— performances that is possible to test.
The overall information will, at the end of the document, enables the validation of such developed
scenario.
To comply with previous requirements, at least two main documents shall be provided for the first step
of validation of an operational scenario, or the validation of the live test:
1. test plan: a detailed description of the test to perform; the used instruments, the platform, the
human resources, the foreseen route with the expected environments;
2. field test validation: this document shall make a critical review of the actual conditions met during
the field test. Instruments, platform, people executing the test and other conditions shall be
coherent with the ones foreseen in the test plan.
Two previous documents, if they are well-drafted then enable only the proper design of an operational
scenario. This means that for the final validation of the operational scenario, other documents are
required, such as the two following ones:
11

---------------------- Page: 13 ----------------------
oSIST prEN 16803-4:2023
prEN 16803-4:2023 (E)
— measurement uncertainty estimations of reference trajectory: being the “term of comparison”
for the estimation of all performances of DU
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.