Ships and marine technology — Procedure for testing the performance of continuous monitoring TRO sensors used in ships — Part 1: DPD sensors

This document provides a method to ensure the performance of continuous monitoring TRO sensors, which can be installed in a BWMS or elsewhere in a ship, taking into consideration environmental factors associated with shipboard conditions, such as high salinity, vibration, variation in humidity and temperature, and predictable sea conditions. This document is intended for use by BWMS manufacturers, sensor manufacturers, testing agencies, and ship owners to verify the performance of a TRO sensor unit. This document is intended to provide requirements and guidance for TRO sensors that use the N, N-diethyl-1,4-phenylene diamine (DPD) method. These requirements and guidance are applicable to testing of sensor units in a laboratory prior to installation. This document identifies: — performance characteristics to be defined by manufacturers of TRO sensors used in the shipboard treatment environment (e.g. salinity range); — pre-qualification and performance procedures to document instrument capabilities; — performance test procedures to be used in different environmental conditions.

Navires et technologie maritime — Méthode de contrôle des performances des capteurs de TRO de surveillance continue utilisés à bord des navires — Partie 1: Capteurs à la DPD

Le présent document spécifie une méthode qui permet de s’assurer des performances des capteurs de TRO de surveillance continue qui peuvent être installés dans un BWMS ou à un autre endroit d’un navire, en tenant compte des facteurs environnementaux associés aux conditions à bord du navire, des variations d’humidité et de température ainsi que de l’état prévisible de la mer. Le présent document est destiné à être utilisé par les fabricants de BWMS, les fabricants de capteurs, les organismes d’essai et les armateurs afin de vérifier les performances d’une unité à capteur de TRO. Le présent document est destiné à fournir des exigences et des recommandations pour les capteurs de TRO qui utilisent la méthode à la N,N-diéthyl-1,4-phénylènediamine (DPD). Ces exigences et recommandations sont applicables aux essais des unités à capteur de TRO en laboratoire, avant l’installation. Le présent document identifie: — les caractéristiques de performance à définir par les fabricants de capteurs de TRO utilisés dans l’environnement de traitement à bord des navires (gamme de salinité, par exemple); — les modes opératoires de pré-qualification et de contrôle des performances pour produire une documentation sur les capacités des instruments; — les modes opératoires de contrôle des performances à utiliser dans différentes conditions d’environnement.

General Information

Status
Published
Publication Date
10-May-2023
Current Stage
6060 - International Standard published
Start Date
11-May-2023
Due Date
04-Sep-2023
Completion Date
11-May-2023
Ref Project

Buy Standard

Standard
ISO 23780-1:2023 - Ships and marine technology — Procedure for testing the performance of continuous monitoring TRO sensors used in ships — Part 1: DPD sensors Released:11. 05. 2023
English language
20 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 23780-1:2023 - Navires et technologie maritime — Méthode de contrôle des performances des capteurs de TRO de surveillance continue utilisés à bord des navires — Partie 1: Capteurs à la DPD Released:11. 05. 2023
French language
20 pages
sale 15% off
Preview
sale 15% off
Preview
Draft
REDLINE ISO/FDIS 23780-1 - Ships and marine technology — Procedure for testing the performance of continuous monitoring TRO sensors used in ships — Part 1: DPD sensors Released:2/2/2023
English language
20 pages
sale 15% off
Preview
sale 15% off
Preview
Draft
ISO/FDIS 23780-1 - Ships and marine technology — Procedure for testing the performance of continuous monitoring TRO sensors used in ships — Part 1: DPD sensors Released:2/2/2023
English language
20 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 23780-1
First edition
2023-05
Ships and marine technology —
Procedure for testing the performance
of continuous monitoring TRO sensors
used in ships —
Part 1:
DPD sensors
Navires et technologie maritime — Méthode de contrôle des
performances des capteurs de TRO de surveillance continue utilisés à
bord des navires —
Partie 1: Capteurs à la DPD
Reference number
ISO 23780-1:2023(E)
© ISO 2023

---------------------- Page: 1 ----------------------
ISO 23780-1:2023(E)
COPYRIGHT PROTECTED DOCUMENT
© ISO 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
ISO copyright office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: +41 22 749 01 11
Email: copyright@iso.org
Website: www.iso.org
Published in Switzerland
ii
  © ISO 2023 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 23780-1:2023(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Determination of the measurement procedure . 3
5 Preparation for the test . 4
5.1 Confirmation of effective chlorine concentration . 4
5.2 Preparation for chlorine standard solution. 4
5.3 V erification of standard solution . 4
5.4 Interferences . 5
5.4.1 General . 5
5.4.2 Salinity . 5
5.4.3 Manganese compounds . 5
5.4.4 Colour and turbidity . 5
5.4.5 Dissolved oxygen . 5
5.4.6 Temperature . 5
5.5 Procedures for determining the impact on interferences . 5
5.5.1 General . 5
5.5.2 Salinity . 6
5.5.3 Temperature . 6
5.5.4 Turbidity (optional) . 6
5.6 Test equipment and apparatus . 7
6 Pre-test (checklist and method/specifications) . 7
6.1 General . 7
6.2 Abnormal water level test . 7
6.3 Sample temperature test . 8
7 Test procedures . 8
7.1 Main test . 8
7.1.1 General . 8
7.1.2 Linearity test . 8
7.1.3 Zero drift test . 9
7.1.4 MDL (method detection limit) test . 10
7.1.5 Span drift and repeatability test . 11
7.1.6 Response time test .12
7.1.7 Total performance test .12
7.1.8 Reagent validity test .13
7.2 TRO sensor unit environmental test . 14
7.2.1 General . 14
7.2.2 Testing items . 14
7.2.3 IP test . 14
7.2.4 Explosion test . 14
7.3 Test report . 14
Annex A (normative) The test bench facilities .16
Annex B (normative) Information to be supplied by manufacturer.18
Annex C (normative) Chlorine concentration test sheet .19
Bibliography .20
iii
© ISO 2023 – All rights reserved

---------------------- Page: 3 ----------------------
ISO 23780-1:2023(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 8, Ships and marine technology.
A list of all parts in the ISO 23780 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
  © ISO 2023 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 23780-1:2023(E)
Introduction
The International Maritime Organization (IMO) adopted the International Convention for the Control
[1]
and Management of Ships' Ballast Water and Sediments (BWM Convention) in 2004 . The Convention
entered into force in September 2017 and requires that ballast water management systems (BWMS) be
installed on board vessels according to an implementation schedule in the ensuing years. The Convention
requires that the use of active substances by BWMS be evaluated using the Procedure for approval of
ballast water management systems that make use of active substances (G9 Procedure of the Convention)
[2]
to ensure that the use of the BWMS does not pose any unacceptable risk to the environment, human
health, property or resources. Oxidants are an important active substance associated with certain
treatment systems. Total residual oxidant (TRO) is a critical process control parameter during both
uptake and discharge of oxidant treatment technologies. TRO sensors are also used for compliance
monitoring (maximum allowable discharge concentration) of ship discharges.
Sensors that monitor TRO are used in oxidant-based ballast water treatment to control both oxidant
dose at ballast uptake and oxidant neutralization at ballast discharge. On uptake, the TRO sensor is
used to monitor and control the addition of oxidant. This will vary depending upon the oxidant demand
(due to organic matter) in the water being treated. On discharge, the TRO sensor monitors and controls
the neutralization of any residual oxidant prior to overboard discharge, consistent with the approval by
the IMO Marine Environment Protection Committee (MEPC). Consequently, the TRO sensor is expected
to provide reliable, real-time monitoring.
N,N-Diethyl-p-phenylenediamine (DPD) is used in total and free chlorine (Cl ) colorimetric analysis
2
because it reacts with hypochlorous acid and hypochlorite ions. Most conventional TRO analysis
methods apply to drinking water and low-saline water treatment in land-based facilities. Using these
methods, most of the TRO measurements are made under stable environmental conditions, for example
in terms of continuous flow and water properties. By contrast, the BWMS TRO measurements must
consider varying conditions. Several factors interfere with TRO measurements. For example, the salts
and other ions in seawater can affect the development of a specific colour that is quantitatively related
to the TRO concentration in water. The pH and water temperature may affect the oxidation potential of
Cl in water, interfering with the TRO measurement. The production of a relatively weak colour may be
2
due to shadow effects from particles or organic matter in water.
The testing of the performance of TRO sensors in water is currently per ISO 7393-3. This method is
appropriate for drinking water and other waters where additional halogens like bromine, iodine, and
other oxidizing agents are present in almost negligible amounts. Seawater and waters containing
bromides and iodides comprise a group for which special procedures are to be carried out. TRO sensors
are now being used on ships, which are often in marine waters, and a method for evaluating the potential
substances that may interfere with both shipboard and marine waters is currently not available.
v
© ISO 2023 – All rights reserved

---------------------- Page: 5 ----------------------
INTERNATIONAL STANDARD ISO 23780-1:2023(E)
Ships and marine technology — Procedure for testing the
performance of continuous monitoring TRO sensors used
in ships —
Part 1:
DPD sensors
1 Scope
This document provides a method to ensure the performance of continuous monitoring TRO sensors,
which can be installed in a BWMS or elsewhere in a ship, taking into consideration environmental
factors associated with shipboard conditions, such as high salinity, vibration, variation in humidity
and temperature, and predictable sea conditions. This document is intended for use by BWMS
manufacturers, sensor manufacturers, testing agencies, and ship owners to verify the performance of a
TRO sensor unit.
This document is intended to provide requirements and guidance for TRO sensors that use the N,
N-diethyl-1,4-phenylene diamine (DPD) method. These requirements and guidance are applicable to
testing of sensor units in a laboratory prior to installation. This document identifies:
— performance characteristics to be defined by manufacturers of TRO sensors used in the shipboard
treatment environment (e.g. salinity range);
— pre-qualification and performance procedures to document instrument capabilities;
— performance test procedures to be used in different environmental conditions.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
IACS UR E10, Test specification for type approval
ISO 7393-2, Water quality — Determination of free chlorine and total chlorine — Part 2: Colorimetric
method using N,N-dialkyl-1,4-phenylenediamine, for routine control purposes
IEC 60529, Degrees of protection provided by enclosures (IP Code)
IEC 60079 (all parts), Explosive atmospheres
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
1
© ISO 2023 – All rights reserved

---------------------- Page: 6 ----------------------
ISO 23780-1:2023(E)
3.1
abnormal water level
minimum water level that can be measured in measurement cell
3.2
active substance
AS
substance or organism, including a virus or fungus that has a general or specific action on or against
harmful aquatic organisms and pathogens
[SOURCE: IMO, Resolution MEPC.169(57):2008, 2.1]
3.3
calibration solution
solution containing a substance or mixture of substances giving a defined value of the determinand
(3.4) and used for calibration of the total residual oxidant sensor (3.11) instrument
3.4
determinand
property or substance that is required to be measured and reflected by, or present in, a calibration
solution (3.3)
[SOURCE: ISO 15839:2003, 3.13]
3.5
reagent validity test
stability test of buffer and indicator reagent solution required for total residual oxidant (3.10)
measurement
3.6
response time
time interval between the instant when the total residual oxidant sensor (3.11) is subjected to a zero
solution (3.14) in determinand (3.4) value and the instant when the readings cross a band defined by
90 % of span solution (3.8)
3.7
span drift
variation of the indicated value for the span of the measuring device for a certain period of time
3.8
span solution
solution with a certain percentage of analyte concentration within the measuring range specified for
the instrument
3.9
standard solution
set of simple or synthetic reference solutions having different analyte concentrations
Note 1 to entry: The zero solution is, in principle, the solution having zero concentration of the analyte.
3.10
total residual oxidant
TRO
complete amount of oxidising compounds in water, including biocidal compounds added via chemical
injection, electrolysis, or ozonation, such as chlorine gas, chlorine dioxide (ClO ), ozone (O ), or
2 3
chemicals that are quickly converted to sodium hypochlorite
Note 1 to entry: TROs also include compounds derived from reactions with primary oxidants, such as hypohalites,
hypohalous acids, chloramines, bromamines, and N-Cl linked compounds.
2
  © ISO 2023 – All rights reserved

---------------------- Page: 7 ----------------------
ISO 23780-1:2023(E)
Note 2 to entry: Active substances (AS) should be defined by the ballast water management system (BWMS)
manufacturer, which should be controlled as intended through the risk assessment of the BWMS. Then a
BWMS with an AS defined by the manufacturer would be evaluated with equivalent oxidation potential of TRO.
Therefore, the concept of TRO in this application of BWMS is rather conceptual. Even some potential substances
in treated water such as chlorine gas, chloramines and other disinfection by-products are not considered and
proposed as the AS or TRO by the manufacturer.
3.11
total residual oxidant sensor
TRO sensor
sensor which measures the concentration of total residual oxidant (3.10)
3.12
TRO sensor unit
TSU
device designed for processes that require continuous in-line monitoring of total residual oxidant (TRO)
(3.10) levels
Note 1 to entry: It monitors the concentration levels of TRO during ballasting and de-ballasting.
Note 2 to entry: It should be composed of buffer solution, indicator and sample measurement cell separately.
3.13
zero drift
variation of the indicated value for the zero of the measuring device for a certain period of time
3.14
zero solution
solution having no residual oxidant, such as purified water, which can be used for zero-point solution
4 Determination of the measurement procedure
The laboratory test is designed to demonstrate the performance characteristics of the TRO sensor that
will be installed in the ballast water management systems.
The manufacturer shall check the general requirements of the TRO sensor unit (TSU) in accordance
with Annex A. The manufacturer shall also provide the information to the testing agency as specified in
Annex B, to conduct the performance evaluation of the TSU in the laboratory. The test bench facilities
(see Annex A) can be slightly different for each test environment. However, the following conditions
shall be applied in all instruments.
The test bench facilities shall match the requirements specified for the instruments by the manufacturer.
The facilities shall include the ability to record (manually or automatically) readings of the sensor
equipment in analogue or digital form.
Where appropriate, it shall be possible to change the calibration solution determinand value measured
by the instrument within less than 10 % of the response time declared by the manufacturer. Typical
examples where this is not appropriate are the determination of turbidity and electrical conductivity.
The facilities shall include laboratory instruments for analysis of the required determinand(s). The
methods used and test results shall be reported (see 7.3).
After confirming the performance of the interferences of the TRO sensor (see 5.4 and 5.5), the
manufacturer should present it to the test agency, which should then verify the performance provided
by the manufacturer.
A schematic of the test procedure is shown in Figure 1.
3
© ISO 2023 – All rights reserved

---------------------- Page: 8 ----------------------
ISO 23780-1:2023(E)
Figure 1 — Schematic of the test procedure
5 Preparation for the test
5.1 Confirmation of effective chlorine concentration
There are two ways to make a chlorine standard solution: solid and liquid. When using solid or liquid
standard matter, determine the effective chlorine concentration before preparing the standard solution.
Steps for determining the effective concentration of chlorine shall be in accordance with Annex C.
5.2 Preparation for chlorine standard solution
The standard solution shall be prepared at the time of testing and verified in accordance with
ISO 7393-2, using the following procedure.
a) Standard stock solution (1 000 mg/l): Dissolve the amount obtained in 5.3 or quantified liquid
reagent and fill distilled water to 1 000 ml.
b) Pour 100 ml of the standard stock solution (calcium hypochlorite) into the measured 9,9 l distilled
water in container (= 10 mg/l).
c) As an analysis result, the sample should be diluted and analysed again if the measurement value
gets out of specification of the instrument.
5.3 Verification of standard solution
a) Verify the standard solution is not expired by measuring values of the 50 % sea water span solution
two times directly after making the solution and passing a certain time period.
4
  © ISO 2023 – All rights reserved

---------------------- Page: 9 ----------------------
ISO 23780-1:2023(E)
b) Fresh liquid standard solution shall be prepared from solid calcium hypochlorite immediately prior
to each test and directly discarded after the test is complete.
5.4 Interferences
5.4.1 General
Potential sources of interferences to the measurement are identified in this clause. In this test, an
interference measurement procedure is presented to consider the effect of interferences.
The N, N-diethyl-1,4-phenylene diamine (DPD) method detects oxidants used as disinfectants: chlorine
(Cl ), chlorine dioxide (ClO ), ozone (O ), bromine (Br ), and disinfection by-products such as chlorite,
2 2 3 2
chlorate, bromite and bromate.
Based on the TRO sensor equipment and test environment conditions, the testing organization shall
prepare the test bench, check the general equipment items, and test them in accordance with Annexes A
and B.
The calibration test of the TRO sensor shall be performed taking into account turbidity, salinity and
temperature.
5.4.2 Salinity
Halogen ions in saline-containing solutions can cause a relatively low colour reaction, interfering with
TRO measurements in sea water.
5.4.3 Manganese compounds
Manganese can exist in oxidation states of +2 through +7. The higher oxidation states, typically +3 to
+7, will interfere with the DPD method. Free chlorine reacts to oxidize soluble manganese compounds.
5.4.4 Colour and turbidity
One critical problem when applying colorimetric procedures to samples is interference from turbidity
and colour in the water. For certain parameters, a preliminary filtration can be performed to remove
particulate matter from the sample without any modification of oxidant’s potential, nor time delay to
measuring. The residual sample colour is “zeroed” at the measuring wavelength.
5.4.5 Dissolved oxygen
The indicator reagent will be oxidized by dissolved oxygen at higher pH. The reagent should always be
maintained in a buffer with pH between 6 and 8.
5.4.6 Temperature
Higher temperatures increase the oxidation reaction rates of free chlorine with various organic and
inorganic compounds.
5.5 Procedures for determining the impact on interferences
5.5.1 General
There are several factors that interfere with TRO, but this document presents a test procedure to
confirm the effects of salinity, temperature, and turbidity, which are the major interferences. These
tests shall be performed within the range agreed upon by the manufacturer and the testing agency. The
testing institute should check this course is in line with the items suggested by the manufacturer before
this test, particularly in terms of sensor performance. The purpose of interference testing is to assess
the particles suspended in fluid that scatter and absorb light at the TRO measurement wavelengths.
5
© ISO 2023 – All rights reserved

---------------------- Page: 10 ----------------------
ISO 23780-1:2023(E)
5.5.2 Salinity
Water for performance testing shall be prepared for up to three salinities as required; seawater,
brackish water and fresh water. Clients can select the salinity section to be tested among the water
conditions in Table 1 and request it to the test agency. Seawater and brackish waters may be prepared
from either seawater or artificial seawater mix at the salinities found in Table 1. It shall be verified that
the testing water is at the same salinity according to 5.3.
Table 1 — Saline range
Water condition Salinity Remarks
a) Seawater 28 – 36 PSU
b) Brackish water 10 – 20 PSU
c) Freshwater < 1 PSU
NOTE The saline range is measured in unit of Practical Salinity Unit (PSU).
5.5.3 Temperature
The testing client can select the water condition (temperature) and require the target condition to be
used by the testing organization. Temperature ranges for testing are provided in Table 2.
Table 2 — Water condition (temperature)
Range Temperature Remark
a) Low temperature <2 °C liquid (not frozen) water
b) Mid-range temperature 2 °C ~ 30 °C Room temperature
c) High temperature > 30 °C
5.5.4 Turbidity (optional)
a) The range value of turbidity that affects the equipment performance should be provided by the
manufacturer. The testing agency should check the interference effect of TRO measurement at the
low and high turbidity values (see Table 3 and Figure 2).
b) The turbidity value of water for the test is presented as a range.
c) Measure 5 %, 50 % span solution at blank (see NOTE), low turbidity and high turbidity respectively.
NOTE A blank is a solution without turbidity and is tested in the same way as samples with turbidity.
Table 3 — Turbidity range
Range Turbidity Remark
a) Low turbidity Provided by manufacturer
b) High turbidity Provided by manufacturer
NOTE These additional tests can be conducted to evaluate the equipment's performance against the interferen
...

NORME ISO
INTERNATIONALE 23780-1
Première édition
2023-05
Navires et technologie maritime —
Méthode de contrôle des
performances des capteurs de TRO de
surveillance continue utilisés à bord
des navires —
Partie 1:
Capteurs à la DPD
Ships and marine technology — Procedure for testing the
performance of continuous monitoring TRO sensors used in ships —
Part 1: DPD sensors
Numéro de référence
ISO 23780-1:2023(F)
© ISO 2023

---------------------- Page: 1 ----------------------
ISO 23780-1:2023(F)
DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2023
Tous droits réservés. Sauf prescription différente ou nécessité dans le contexte de sa mise en œuvre, aucune partie de cette
publication ne peut être reproduite ni utilisée sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique,
y compris la photocopie, ou la diffusion sur l’internet ou sur un intranet, sans autorisation écrite préalable. Une autorisation peut
être demandée à l’ISO à l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Case postale 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Genève
Tél.: +41 22 749 01 11
E-mail: copyright@iso.org
Web: www.iso.org
Publié en Suisse
ii
  © ISO 2023 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 23780-1:2023(F)
Sommaire Page
Avant-propos .iv
Introduction .v
1 Domaine d’application . 1
2 Références normatives .1
3 Termes et définitions . 1
4 Détermination du mode opératoire de mesure . 3
5 Préparation de l’essai . 4
5.1 Confirmation de la concentration efficace en chlore . 4
5.2 Préparation de la solution d’étalon chlorée . 5
5.3 Vérification de la solution étalon . . . 5
5.4 Interférences . 5
5.4.1 Généralités . 5
5.4.2 Salinité . 5
5.4.3 Composés de manganèse . 5
5.4.4 Couleur et turbidité . 5
5.4.5 Oxygène dissous . 6
5.4.6 Température . 6
5.5 Modes opératoires pour déterminer l’impact sur les interférences . 6
5.5.1 Généralités . 6
5.5.2 Salinité . 6
5.5.3 Température . 6
5.5.4 Turbidité (facultative) . . 6
5.6 Équipement et appareillage d’essai . 7
6 Essai préliminaire (liste de contrôle et méthode/spécifications) . 8
6.1 Généralités . 8
6.2 Essai du niveau d’eau anormal . 8
6.3 Essai de température de l’échantillon . 8
7 Modes opératoires d’essai .9
7.1 Essai principal . 9
7.1.1 Généralités . 9
7.1.2 Essai de linéarité . 9
7.1.3 Essai de dérive au zéro . 10
7.1.4 Essai LDM (limite de détection de la méthode) . 10
7.1.5 Essai de répétabilité et de dérive au point d’échelle . 11
7.1.6 Essai du temps de réponse .12
7.1.7 Essai de performance totale . 13
7.1.8 Essai de validité du réactif . 13
7.2 Essai d’environnement de l’unité à capteur de TRO . 14
7.2.1 Généralités . 14
7.2.2 Éléments d’essai . 14
7.2.3 Essai IP . 14
7.2.4 Essai d’explosion . 14
7.3 Rapport d’essai . 14
Annexe A (normative) Installations du banc d’essai .16
Annexe B (normative) Informations à fournir par le fabricant .18
Annexe C (normative) Fiche technique de la concentration en chlore.19
Bibliographie .20
iii
© ISO 2023 – Tous droits réservés

---------------------- Page: 3 ----------------------
ISO 23780-1:2023(F)
Avant-propos
L'ISO (Organisation internationale de normalisation) est une fédération mondiale d'organismes
nationaux de normalisation (comités membres de l'ISO). L'élaboration des Normes internationales est
en général confiée aux comités techniques de l'ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l'ISO participent également aux travaux.
L'ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d'approbation requis pour les différents types de documents ISO. Le présent document
a été rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2
(voir www.iso.org/directives).
L'attention est attirée sur le fait que certains des éléments du présent document peuvent faire l'objet de
droits de propriété intellectuelle ou de droits analogues. L'ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l'élaboration du document sont indiqués dans l'Introduction et/ou dans la liste des déclarations de
brevets reçues par l'ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l'ISO liés à l'évaluation de la conformité, ou pour toute information au sujet de l'adhésion
de l'ISO aux principes de l’Organisation mondiale du commerce (OMC) concernant les obstacles
techniques au commerce (OTC), voir: www.iso.org/iso/fr/avant-propos.
Le présent document a été élaboré par le comité technique ISO/TC 8, Navires et technologie maritime.
Une liste de toutes les parties de la série ISO 23780 se trouve sur le site web de l’ISO.
Il convient que l’utilisateur adresse tout retour d’information ou toute question concernant le présent
document à l’organisme national de normalisation de son pays. Une liste exhaustive desdits organismes
se trouve à l’adresse www.iso.org/fr/members.html.
iv
  © ISO 2023 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 23780-1:2023(F)
Introduction
L’Organisation maritime internationale (OMI) a adopté la Convention internationale pour le contrôle
[1]
et la gestion des eaux de ballast et sédiments des navires (Convention BWM) en 2004. Cette
Convention est entrée en vigueur en septembre 2017 et impose que des systèmes de gestion des eaux
de ballast (BWMS) soient installés à bord des navires suivant un calendrier de mise en œuvre au
cours des années suivantes. La Convention exige que l’utilisation de substances actives par les BWMS
soit évaluée en appliquant la Procédure d’approbation des systèmes de gestion des eaux de ballast qui
[2]
utilisent des substances actives (Procédure G9 de la Convention) afin de s’assurer que l’utilisation
du BWMS n’entraîne pas de risque inacceptable pour l’environnement, la santé humaine, les biens
ou les ressources. Les oxydants sont une substance active importante associée à certains systèmes
de traitement. L’oxydant résiduel total (TRO) est un paramètre critique de contrôle du processus de
traitement par les technologies utilisant des oxydants, lors de la prise et du rejet. Des capteurs de TRO
sont également utilisés pour la surveillance de la conformité (concentration maximale autorisée des
rejets) des rejets d’un navire.
Les capteurs qui surveillent le TRO sont utilisés dans le traitement des eaux de ballast afin de contrôler
à la fois la dose d’oxydant lors de la prise d’eau de ballast, et la neutralisation de l’oxydant lors du rejet
d’eau de ballast. Au cours de la prise, le capteur de TRO sert à surveiller et contrôler l’ajout d’oxydant.
Lequel variera en fonction de la demande en oxydant (en raison de la matière organique) de l’eau en
cours de traitement. Pendant le rejet, le capteur de TRO surveille et contrôle la neutralisation de tout
oxydant résiduel avant le rejet en mer, en cohérence avec l’approbation du Comité de protection du
milieu marin (MEPC) de l’OMI. Par conséquent, le capteur de TRO est censé assurer un contrôle fiable
en temps réel.
La N,N-diéthyl-p-phénylènediamine (DPD) est utilisée pour l’analyse colorimétrique du chlore total et
du chlore libre (Cl ) car elle réagit avec l’acide hypochloreux et les ions hypochlorite. La plupart des
2
méthodes conventionnelles d’analyse du TRO s’appliquent au traitement de l’eau potable et de l’eau à
faible salinité dans les installations terrestres. L’utilisation de ces méthodes permet de réaliser la
majorité des mesurages de TRO dans des conditions d’environnement stables, par exemple en matière
de débit continu et de propriétés de l’eau. En revanche, les mesures de TRO des BWMS doivent tenir
compte de la variabilité des conditions. Plusieurs facteurs affectent les mesurages de TRO. Par exemple,
les sels et autres ions présents dans l’eau de mer peuvent affecter le développement d’une couleur
spécifique qui est quantitativement liée à la concentration de TRO dans l’eau. Le pH et la température
de l’eau peuvent également affecter le potentiel d’oxydation du Cl dans l’eau, ce qui interfère sur le
2
mesurage du TRO. La production d’une couleur relativement faible peut résulter des effets d’ombre des
particules ou de la matière organique dans l’eau.
Le contrôle des performances des capteurs de TRO dans l’eau s’effectue actuellement conformément
à l’ISO 7393-3. Cette méthode convient pour l’eau potable et les autres eaux lorsque des halogènes
supplémentaires tels que le brome, l’iode et d’autres agents oxydants sont présents en quantités
pratiquement négligeables. L’eau de mer et les eaux contenant des bromures et des iodures comprennent
un groupe qui nécessite la mise en œuvre de modes opératoires spéciaux. Les capteurs de TRO sont
désormais utilisés sur les navires, qui naviguent souvent dans des eaux marines, et aucune méthode ne
permet actuellement d’évaluer les substances qui peuvent potentiellement affecter les eaux à bord des
navires et les eaux marines.
v
© ISO 2023 – Tous droits réservés

---------------------- Page: 5 ----------------------
NORME INTERNATIONALE ISO 23780-1:2023(F)
Navires et technologie maritime — Méthode de contrôle
des performances des capteurs de TRO de surveillance
continue utilisés à bord des navires —
Partie 1:
Capteurs à la DPD
1 Domaine d’application
Le présent document spécifie une méthode qui permet de s’assurer des performances des capteurs
de TRO de surveillance continue qui peuvent être installés dans un BWMS ou à un autre endroit d’un
navire, en tenant compte des facteurs environnementaux associés aux conditions à bord du navire,
des variations d’humidité et de température ainsi que de l’état prévisible de la mer. Le présent document
est destiné à être utilisé par les fabricants de BWMS, les fabricants de capteurs, les organismes d’essai
et les armateurs afin de vérifier les performances d’une unité à capteur de TRO.
Le présent document est destiné à fournir des exigences et des recommandations pour les capteurs
de TRO qui utilisent la méthode à la N,N-diéthyl-1,4-phénylènediamine (DPD). Ces exigences
et recommandations sont applicables aux essais des unités à capteur de TRO en laboratoire,
avant l’installation. Le présent document identifie:
— les caractéristiques de performance à définir par les fabricants de capteurs de TRO utilisés dans
l’environnement de traitement à bord des navires (gamme de salinité, par exemple);
— les modes opératoires de pré-qualification et de contrôle des performances pour produire une
documentation sur les capacités des instruments;
— les modes opératoires de contrôle des performances à utiliser dans différentes conditions
d’environnement.
2 Références normatives
Les documents suivants sont cités dans le texte de sorte qu’ils constituent, pour tout ou partie de leur
contenu, des exigences du présent document. Pour les références datées, seule l’édition citée s’applique.
Pour les références non datées, la dernière édition du document de référence s’applique (y compris les
éventuels amendements).
IACS UR E10, Test specification for type approval (disponible en anglais seulement).
ISO 7393-2, Qualité de l'eau — Dosage du chlore libre et du chlore total — Partie 2: Méthode colorimétrique
à la N,N-dialkylphénylène-1,4 diamine destinée aux contrôles de routine
IEC 60529, Degrés de protection procurés par les enveloppes (code IP)
IEC 60079 (toutes les parties), Atmosphères explosives
ISO/IEC 17025, Exigences générales concernant la compétence des laboratoires d'étalonnages et d'essais
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions suivants s'appliquent.
1
© ISO 2023 – Tous droits réservés

---------------------- Page: 6 ----------------------
ISO 23780-1:2023(F)
L’ISO et l’IEC tiennent à jour des bases de données terminologiques destinées à être utilisées en
normalisation, consultables aux adresses suivantes:
— ISO Online browsing platform: disponible à l’adresse https:// www .iso .org/ obp;
— IEC Electropedia: disponible à l’adresse https:// www .electropedia .org/ .
3.1
niveau d’eau anormal
niveau d’eau minimal qui peut être mesuré dans une cellule de mesure
3.2
substance active
SA
substance ou organisme, y compris un virus ou un champignon, qui agit de manière générale ou
spécifique sur ou contre des organismes aquatiques nuisibles et des agents pathogènes
[SOURCE: OMI, Résolution MEPC.169(57):2008, 2.1]
3.3
solution d’étalonnage
solution contenant une substance ou un mélange de substances donnant une valeur définie de la
caractéristique à déterminer (3.4) et utilisée pour l’étalonnage du capteur d’oxydant résiduel total (3.11)
3.4
caractéristique à déterminer
propriété ou substance qu’il faut mesurer et qui doit être présente dans la solution d’étalonnage (3.3) ou
que cette dernière doit refléter
[SOURCE: ISO 15839:2003, 3.13]
3.5
essai de validité du réactif
essai de stabilité de la solution tampon et du réactif indicateur requis pour le mesurage de l’oxydant
résiduel total (3.10)
3.6
temps de réponse
intervalle de temps entre l’instant où le capteur d’oxydant résiduel total (3.11) est soumis à une solution
zéro (3.14) de la valeur de la caractéristique à déterminer (3.4) et l’instant où les lectures franchissent
une bande définie par la solution au point d’échelle (3.8) à 90 %
3.7
dérive au point d’échelle
variation de la valeur indiquée pour le point d’échelle du dispositif de mesure pendant une certaine
période
3.8
solution au point d’échelle
solution ayant un certain pourcentage de concentration d’analyte sur la plage de mesure spécifiée pour
l’instrument
3.9
solution étalon
ensemble de solutions de référence simples ou synthétiques ayant différentes concentrations d’analyte
Note 1 à l'article: La solution zéro est, en principe, la solution ayant une concentration d’analyte nulle.
2
  © ISO 2023 – Tous droits réservés

---------------------- Page: 7 ----------------------
ISO 23780-1:2023(F)
3.10
oxydant résiduel total
TRO (Total Residual Oxidant)
quantité totale de composés oxydants présents dans l’eau, y compris les composés biocides ajoutés
par injection chimique, électrolyse ou ozonation, tels que le chlore gazeux, le dioxyde de chlore (ClO ),
2
l’ozone (O ) ou les produits chimiques rapidement convertis en hypochlorite de sodium
3
Note 1 à l'article: Les TRO comprennent également les composés issus de réactions avec des oxydants primaires,
tels que les hypohalogénures, les acides hypohalogéneux, les chloramines, les bromamines et les composés à
liaison N-Cl.
Note 2 à l'article: Il convient que le fabricant du système de gestion des eaux de ballast (BWMS) définisse les
substances actives qu’il y a lieu de contrôler comme prévu par une évaluation des risques du BWMS. Un BWMS
avec une substance active définie par le fabricant serait ensuite évalué avec un potentiel d’oxydation équivalent
de TRO. Par conséquent, le terme TRO dans cette application des BWMS revêt un caractère plutôt conceptuel.
Même certaines substances potentielles présentes dans l’eau traitée telles que le chlore gazeux, les chloramines
et autres sous-produits de désinfection, ne sont pas prises en compte et proposées comme substance active ou
TRO par le fabricant.
3.11
capteur d’oxydant résiduel total
capteur de TRO
capteur mesurant la concentration en oxydant résiduel total (3.10)
3.12
unité à capteur de TRO
TSU (TRO Sensor Unit)
dispositif conçu pour des processus qui nécessitent un contrôle direct des niveaux d’oxydant résiduel
total (TRO) (3.10)
Note 1 à l'article: Cette unité contrôle les niveaux de concentration en TRO pendant le ballastage et le déballastage.
Note 2 à l'article: Il convient qu’elle se compose d’une solution tampon, d’un indicateur et d’une cellule de mesure
d’échantillon séparée.
3.13
dérive au zéro
variation de la valeur indiquée pour le zéro du dispositif de mesure sur une période de temps spécifiée
3.14
solution zéro
solution sans oxydant résiduel, telle que de l’eau purifiée, qui peut être utilisée en tant que solution au
point zéro
4 Détermination du mode opératoire de mesure
L’essai de laboratoire est conçu pour démontrer les caractéristiques de performance du capteur de TRO
qui sera installé dans les systèmes de gestion des eaux de ballast.
Le fabricant doit vérifier les exigences générales de l’unité à capteur de TRO (TSU) conformément à
l’Annexe A. Le fabricant doit également communiquer à l’organisme d’essai, tel que spécifié à l’Annexe B,
les informations permettant de réaliser l’évaluation des performances de la TSU en laboratoire. Les
installations du banc d’essai (voir l’Annexe A) peuvent être légèrement différentes pour chaque
environnement d’essai. Cependant, les conditions suivantes doivent être appliquées dans tous les
instruments.
Les installations du banc d’essai doivent satisfaire aux exigences spécifiées par le fabricant des
instruments. Les installations doivent donner la possibilité d’enregistrer (manuellement ou
automatiquement) les lectures de l’équipement du capteur sous une forme analogique ou numérique.
3
© ISO 2023 – Tous droits réservés

---------------------- Page: 8 ----------------------
ISO 23780-1:2023(F)
Le cas échéant, il doit être possible de changer la valeur de la caractéristique à déterminer de la solution
d’étalonnage qui est mesurée par l’instrument, sur un intervalle de temps inférieur à 10 % du temps
de réponse déclaré par le fabricant. La détermination de la turbidité et de la conductivité électrique
sont des exemples types de cas où cette modification n’est pas appropriée. Les installations doivent
comprendre des instruments de laboratoire permettant l’analyse de la ou des caractéristiques à
déterminer. Les méthodes utilisées et les résultats d’essai doivent être consignés (voir 7.3).
Après confirmation des performances relatives aux interférences avec le capteur de TRO (voir 5.4 et
5.5), il convient que le fabricant les communique à l’organisme d’essai et il convient que ce dernier
vérifie ensuite les performances indiquées par le fabricant.
La Figure 1 est un schéma du mode opératoire d’essai.
Figure 1 — Schéma du mode opératoire d’essai
5 Préparation de l’essai
5.1 Confirmation de la concentration efficace en chlore
Il existe deux méthodes pour préparer une solution étalon chlorée: solide et liquide. Quelle que soit la
méthode utilisée, il est nécessaire de déterminer la concentration efficace en chlore avant de préparer
la solution étalon. Les étapes pour la détermination de la concentration efficace en chlore doivent
s’effectuer conformément à l’Annexe C.
4
  © ISO 2023 – Tous droits réservés

---------------------- Page: 9 ----------------------
ISO 23780-1:2023(F)
5.2 Préparation de la solution d’étalon chlorée
La solution étalon doit être préparée au moment de l’essai et être vérifiée conformément à l’ISO 7393-2,
en utilisant le mode opératoire suivant:
a) solution étalon mère (1 000 mg/l): Dissoudre la quantité obtenue en 5.3 ou le réactif liquide
quantifié et compléter à 1 000 ml avec de l’eau distillée;
b) verser 100 ml de la solution étalon mère (hypochlorite de calcium) dans 9,9 l d’eau distillée mesurée
dans un contenant (= 10 mg/l);
c) pour le résultat de cette analyse, il convient de diluer l’échantillon et de procéder à une nouvelle
analyse si la valeur mesurée est en dehors de la spécification de l’instrument.
5.3 Vérification de la solution étalon
a) Vérifier que la solution étalon n’est pas arrivée à expiration, en mesurant deux fois les valeurs de
la solution d’eau de mer au point d’échelle à 50 %, juste après la préparation de la solution puis en
laissant s’écouler un certain laps de temps.
b) Une nouvelle solution étalon liquide doit être préparée à partir d’hypochlorite de calcium solide
juste avant chaque essai. Elle doit être directement mise au rebut après la fin de l’essai.
5.4 Interférences
5.4.1 Généralités
Le présent paragraphe identifie les potentielles sources d’interférences pour les mesurages. Au cours de
cet essai, un mode opératoire de mesure est proposé pour tenir compte de l’effet de ces interférences.
La méthode à la N,N-diéthyl-1,4-phénylènediamine (DPD) détecte les oxydants utilisés comme
désinfectants: le chlore (Cl ), le dioxyde de chlore (ClO ), l’ozone (O ), le brome (Br ) et les sous-produits
2 2 3 2
de désinfection tels que les chlorites, les chlorates, les bromites et les bromates.
Selon l’équipement du capteur de TRO et les conditions ambiantes de l’essai, l’organisme d’essai doit
préparer le banc d’essai, contrôler l’équipement et le soumettre à essai conformément aux Annexes A et
B.
L’essai d’étalonnage du capteur de TRO doit être réalisé en tenant compte de la turbidité, de la salinité
et de la température.
5.4.2 Salinité
Les ions halogénures des solutions salines peuvent entraîner une réaction colorée relativement faible,
ce qui affecte les mesurages de TRO dans l’eau de mer.
5.4.3 Composés de manganèse
L’état d’oxydation du manganèse peut varier de +2 à +7. Les états d’oxydation plus élevés, en général de
+3 à +7, affecteront la méthode à la DPD. Le chlore libre réagit pour oxyder les composés de manganèse
solubles.
5.4.4 Couleur et turbidité
L’interférence due à la turbidité et à la couleur de l’eau constitue un problème critique lors de l’application
des modes opératoires colorimétriques. Pour certains paramètres, une filtration préliminaire peut être
effectuée afin d’éliminer la matière particulaire de l’échantillon sans aucune modification du potentiel
de l’oxydant ni aucun temps de latence pour la mesure. La couleur résiduelle de l’échantillon est « remise
à zéro » à la longueur d’onde de mesure.
5
© ISO 2023 – Tous droits réservés

---------------------- Page: 10 ----------------------
ISO 23780-1:2023(F)
5.4.5 Oxygène dissous
Le réactif indicateur sera oxydé par l’oxygène dissous à pH élevé. Il convient de toujours conserver le
réactif dans un tampon à pH compris entre 6 et 8.
5.4.6 Température
Les températures élevées augmentent les vitesses de réaction oxydative du chlore libre avec divers
composés organiques et inorganiques.
5.5 M
...

2022-10-18
Style Definition: Normal
2023-02-02 Style Definition: Heading 2: Tab stops: Not at 18 pt
Style Definition: Heading 3: Tab stops: 36 pt, List tab
ISO/FDIS 23780-1:2022 (N 3102023(E)
Style Definition: Heading 4: Font: Bold, Tab stops: 54
ISO TC 8/WG 12
pt, List tab + Not at 36 pt
Secretariat: ANSI
Style Definition: Heading 5: Font: Bold, Tab stops: 54
Ships and marine technology — Procedure for testing the performance of continuous
pt, List tab + Not at 36 pt
monitoring TRO sensors used in ships — Part 1: DPD sensors
Style Definition: Heading 6: Font: Bold, Tab stops: 72
pt, List tab + Not at 36 pt + 54 pt
Navires et technologie maritime — Méthode de contrôle des performances des capteurs de TRO de
surveillance continue utilisés à bord des navires — Partie 1: Capteurs à la DPD
Style Definition: Base_Heading
Style Definition: List Number 1: Tab stops: Not at
19.85 pt + 39.7 pt + 59.55 pt + 79.4 pt + 99.25 pt +
119.05 pt + 138.9 pt + 158.75 pt + 178.6 pt + 198.45
pt
Style Definition: Base_Text
Style Definition: TOC 3: Font: Bold
Style Definition: TOC 2
Style Definition: Footer
Style Definition: Footer Char
Style Definition: a3: Tab stops: 36 pt, List tab
Style Definition: a2: Tab stops: 18 pt, List tab
Style Definition: zzCopyright
Style Definition: Revision1
Style Definition: No Spacing
Style Definition: a4: Tab stops: 54 pt, List tab
Style Definition: a5: Tab stops: 54 pt, List tab
Style Definition: a6: Tab stops: 72 pt, List tab
Style Definition: AMEND Terms Heading: Pattern: 15%,
Tab stops: Not at 21.6 pt
Style Definition: AMEND Heading 1 Unnumbered:
Pattern: 15%, Tab stops: Not at 21.6 pt
Style Definition: Unresolved Mention1
Formatted: Different first page header
Formatted: French (Switzerland)
Formatted: French (Switzerland)

---------------------- Page: 1 ----------------------
ISO/FDIS 23780-1:20222023(E)
© ISO 2022 2023 Formatted
Formatted: Default Paragraph Font
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no
Formatted: No page break before
part of this publication may be reproduced or utilized otherwise in any form or by any means,
electronic or mechanical, including photocopying, or posting on the internet or an intranet, without
prior written permission. Permission can be requested from either ISO at the address below or
ISO’sISO's member body in the country of the requester.
ISO copyright officeCopyright Office
CP 401 • Ch. de Blandonnet 8
CH-1214 Vernier, Geneva
Phone: + 41 22 749 01 11
Email: copyright@iso.org
Email: copyright@iso.org
Website: www.iso.orgwww.iso.org
Published in Switzerland.
Formatted: Font: 11 pt
Formatted: Space After: 0 pt, Line spacing: single
2 © ISO 2022 – All rights reserved
ii © ISO 2023 – All rights reserved

---------------------- Page: 2 ----------------------
ISO/FDIS 23780-1:20222023(E)
Contents
Foreword . iv
Introduction . v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Determination of details of measurement procedure . 3
5 Preparation for the test . 4
5.1 Confirmation of effective chlorine concentration . 4
5.2 Preparation for chlorine standard solution . 5
5.2.1 Verification of standard solution . 5
5.3 Interferences . 5
5.3.1 Salinity . 5
5.3.2 Manganese compounds . 6
5.3.3 Colour and turbidity . 6
5.3.4 Dissolved oxygen . 6
5.3.5 Temperature . 6
5.4 Procedures for determining the impact on interferences . 6
5.4.1 General . 6
5.4.2 Salinity . 6
5.4.3 Temperature . 7
5.4.4 Turbidity (Optional) . 7
5.5 Test equipment and apparatus . 8
6 Pre-test (checklist and method/specifications) . 8
6.1 Abnormal water level test . 8
6.1.1 Abnormal water level test procedure . 8
6.2 Sample temperature test . 9
6.2.1 Sample temperature test procedure . 9
7 Test procedure . 9
7.1 Main test . 9
7.1.1 Linearity test . 10
7.1.2 Zero drift test . 10
7.1.3 MDL test (Method Detection Limit test) . 11
7.1.4 Span drift and Repeatability test . 12
7.1.5 Response time test . 13
7.1.6 Total performance test . 14
7.1.7 Reagent validity test . 14
7.2 TRO sensor unit environmental test . 15
7.2.1 General . 15
7.2.2 Testing items . 15
7.2.3 IP test . 15
7.2.4 Explosion test. 15
7.3 Test report . 15
Formatted: Font: 11 pt
Annex A . 18
Formatted: Space After: 0 pt, Line spacing: single
© ISO 2022 – All rights reserved 3
© ISO 2023 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO/FDIS 23780-1:20222023(E)
Annex B . 20
Annex C . 22
Foreword . v
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
4 Determination of the measurement procedure . 4
5 Preparation for the test . 5
5.1 Confirmation of effective chlorine concentration . 5
5.2 Preparation for chlorine standard solution . 5
5.3 Verification of standard solution . 6
5.4 Interferences . 6
5.4.1 General . 6
5.4.2 Salinity . 6
5.4.3 Manganese compounds. 6
5.4.4 Colour and turbidity . 6
5.4.5 Dissolved oxygen . 6
5.4.6 Temperature . 6
5.5 Procedures for determining the impact on interferences . 7
5.5.1 General . 7
5.5.2 Salinity . 7
5.5.3 Temperature . 7
5.5.4 Turbidity (optional) . 7
5.6 Test equipment and apparatus . 9
6 Pre-test (checklist and method/specifications) . 9
6.1 General . 9
6.2 Abnormal water level test . 10
6.3 Sample temperature test . 10
7 Test procedures . 11
7.1 Main test . 11
7.1.1 General . 11
7.1.2 Linearity test . 11
7.1.3 Zero drift test . 12
7.1.4 MDL (method detection limit) test . 12
7.1.5 Span drift and repeatability test . 13
7.1.6 Response time test . 15
7.1.7 Total performance test . 15
7.1.8 Reagent validity test . 16
7.2 TRO sensor unit environmental test . 17
7.2.1 General . 17
7.2.2 Testing items . 17
7.2.3 IP test . 17
7.2.4 Explosion test . 17
Formatted: Font: 11 pt
7.3 Test report . 17
Formatted: Space After: 0 pt, Line spacing: single
4 © ISO 2022 – All rights reserved
iv © ISO 2023 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/FDIS 23780-1:20222023(E)
Annex A (normative) The test bench facilities . 20
Annex B (normative) Information to be supplied by manufacturer . 25
Annex C (normative)  Chlorine concentration test sheet . 29
Bibliography . 33

Formatted: Font: 11 pt
Formatted: Space After: 0 pt, Line spacing: single
© ISO 2022 – All rights reserved 5
© ISO 2023 – All rights reserved v

---------------------- Page: 5 ----------------------
ISO/FDIS 23780-1:20222023(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
Formatted: English (United Kingdom)
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
Formatted: Don't adjust space between Latin and
through ISO technical committees. Each member body interested in a subject for which a technical
Asian text, Don't adjust space between Asian text and
committee has been established has the right to be represented on that committee. International
numbers
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO
collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directiveswww.iso.org/directives).
Formatted: English (United Kingdom)
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of any
patent rights identified during the development of the document will be in the Introduction and/or on
the ISO list of patent declarations received (see www.iso.org/patentswww.iso.org/patents).
Formatted: English (United Kingdom)
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to the World
Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.htmlwww.iso.org/iso/foreword.html.
Formatted: English (United Kingdom)
This document was prepared by Technical Committee ISO/TC 8, Ships and marine technology.
Formatted: English (United Kingdom)
A list of all parts in the ISO 23780 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
Formatted: English (United Kingdom)
complete listing of these bodies can be found at
Formatted: Don't adjust space between Latin and
www.iso.org/members.htmlwww.iso.org/members.html.
Asian text, Don't adjust space between Asian text and
numbers

Formatted: English (United Kingdom)
Formatted: Font: 11 pt
Formatted: Space After: 0 pt, Line spacing: single
6 © ISO 2022 – All rights reserved
vi © ISO 2023 – All rights reserved

---------------------- Page: 6 ----------------------
ISO/FDIS 23780-1:20222023(E)
Introduction
The International Maritime Organization (IMO) adopted the International Convention for the Control and
[1]
Management of Ships' Ballast Water and Sediments (BWM Convention) in 2004 . The Convention
Formatted: Superscript
entered into force in September 2017 and requires that ballast water management systems (BWMS) be
Formatted: cite_bib, Superscript
installed on board vessels according to an implementation schedule in the ensuing years. The Convention
Formatted: Superscript
requires that the use of active substances by BWMS be evaluated using the Procedure for approval of
ballast water management systems that make use of Active Substancesactive substances (G9 Procedure of
[2]
the Convention) to ensure that the use of the BWMS does not pose any unacceptable risk to the
Formatted: Superscript
environment, human health, property or resources. Oxidants are an important active substance
Formatted: cite_bib, Superscript
associated with certain treatment systems. Total residual oxidant (TRO) is a critical process control
Formatted: Superscript
parameter during both uptake and discharge of oxidant treatment technologies. TRO sensors are also
used for compliance monitoring (maximum allowable discharge concentration) of ship discharges.
Sensors that monitor TRO are used in oxidant-based ballast water treatment to control both oxidant dose
at ballast uptake and oxidant neutralization at ballast discharge. On uptake, the TRO sensor is used to
monitor and control the addition of oxidant. This will vary depending upon the oxidant demand (due to
organic matter) in the water being treated. On discharge, the TRO sensor monitors and controls the
neutralization of any residual oxidant prior to overboard discharge, consistent with the approval by the
IMO Marine Environment Protection Committee (MEPC). Consequently, the TRO sensor is expected to
provide reliable, real-time monitoring.
N,N-Diethyl-p-phenylenediamine (DPD) is used in total and free chlorine (Cl ) colorimetric analysis
2
because it reacts with hypochlorous acid and hypochlorite ions. Most conventional TRO analysis methods
apply to drinking water and low-saline water treatment in land-based facilities. Using these methods,
most of the TRO measurements are made under stable environmental conditions, for example in terms
of continuous flow and water properties. By contrast, the BWMS TRO measurements must consider
varying conditions. Several factors interfere with TRO measurements. For example, the salts and other
ions in seawater can affect the development of a specific colour that is quantitatively related to the TRO
concentration in water. The pH and water temperature may affect the oxidation potential of Cl in water,
2
interfering with the TRO measurement. The production of a relatively weak colour may be due to shadow
effects from particles or organic matter in water.
The testing of the performance of TRO sensors in water is currently per ISO 7393-3[5]. This method is
Formatted: Default Paragraph Font
appropriate for drinking water and other waters where additional halogens like bromine, iodine, and
Formatted: std_docPartNumber
other oxidizing agents are present in almost negligible amounts. Seawater and waters containing
bromides and iodides comprise a group for which special procedures are to be carried out. TRO sensors
are now being used on ships, which are often in marine waters, and a method for evaluating the potential
substances that may interfere with both shipboard and marine waters is currently not available.
Formatted: Font: 11 pt
Formatted: Space After: 0 pt, Line spacing: single
© ISO 2022 – All rights reserved 7
© ISO 2023 – All rights reserved vii

---------------------- Page: 7 ----------------------
FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 23780-1:20222023(E)

Ships and marine technology — Procedure for testing the
performance of continuous monitoring TRO sensors used in
ships — Part 1: DPD sensors
1 Scope
This document provides a method to ensure the performance of continuous monitoring TRO sensors,
which can be installed in a BWMS or elsewhere in a ship, taking into consideration environmental factors
associated with shipboard conditions, such as high salinity, vibration, variation in humidity and
temperature, and predictable sea conditions. This document is intended for use by BWMS manufacturers,
sensor manufacturers, testing agencies, and ship owners to verify the performance of a TRO sensor unit.
This document is intended to provide requirements and guidance for TRO sensors that use the N, N-
diethyl-1,4-phenylene diamine (DPD) method. ThisThese requirements and guidance isare applicable to
testing of sensor units in a laboratory prior to installation. This document identifies:
— performance characteristics to be defined by manufacturers of TRO sensors used in the shipboard
treatment environment (e.g. salinity range);
— pre-qualification and performance procedures to document instrument capabilities;
— performance test procedures to be used in different environmental conditions.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
IACS UR E10, Test specification for type approval
IEC 61000-4-3, Electromagnetic compatibility (EMC) — Part 4-3: Testing and measurement techniques-
Radiated, radio-frequency, electromagnetic field immunity test
ISO 7393--2, Water quality — Determination of free chlorine and total chlorine — Part 2: Colorimetric
method using N,N-dialkyl-1,4-phenylenediamine, for routine control purposes
Formatted: Default Paragraph Font, Font:
IEC 60068-1, Environmental testing — Part 1: General and guidance
IEC 60092-504, Electrical installation in ships — Part 504: Control and Instrumentation
IEC 60533, Electrical and electronic installations in ships — Electromagnetic compatibility (EMC) — Ships
Formatted: Default Paragraph Font
with a metallic hull
Formatted: Default Paragraph Font, Font:
IEC 60529, Degrees of protection provided by enclosures (IP Code)
Formatted: Font: 11 pt
Formatted: Space After: 0 pt, Line spacing: single
© ISO 2022 – All rights reserved 1
© ISO 2023 – All rights reserved 1

---------------------- Page: 8 ----------------------
ISO/FDIS 23780-1:20222023(E)
IEC 60079 (all parts), Explosive atmospheres
Formatted: std_docPartNumber
Formatted: Default Paragraph Font, Font: Not Italic
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
Formatted: std_docTitle, Font: Not Italic
3 Terms and definitions
Formatted: Default Paragraph Font, Font: Not Italic
Formatted: RefNorm, Tab stops: 19.85 pt, Left + 39.7
For the purposes of this document, the following terms and definitions apply.
pt, Left + 59.55 pt, Left + 79.4 pt, Left + 99.25 pt, Left
+ 119.05 pt, Left + 138.9 pt, Left + 158.75 pt, Left +
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
178.6 pt, Left + 198.45 pt, Left
— ISO Online browsing platform: available at https://www.iso.org/obphttps://www.iso.org/obp
Formatted: Don't adjust space between Latin and
Asian text, Don't adjust space between Asian text and
— IEC Electropedia: available at https://www.electropedia.org/https://www.electropedia.org/
numbers
3.1
Formatted: English (United Kingdom)
abnormal water level
Formatted: Font: Cambria, 11 pt, English (United
minimum water level that can be measured in measurement cell
Kingdom)
Formatted: No underline, Font color: Auto, English
3.2
(United Kingdom)
active substance
AS
Formatted
...
substance or organism, including a virus or fungus that has a general or specific action on or against
Formatted: English (United Kingdom)
harmful aquatic organisms and pathogens
Formatted
...
[SOURCE: IMO G9, Resolution MEPC.169(57):2008, 2.1]
Formatted
...
Formatted: English (United Kingdom)
3.3
Formatted
calibration solution
...
solution containing a substance or mixture of substances giving a defined value of the determinand (3.4)
Formatted: Font: Not Italic
and used for calibration of the TROtotal residual oxidant sensor (3.11) instrument
Formatted: cite_sec
3.4 Formatted: cite_sec
determinand
property or substance that is required to be measured and reflected by, or present in, a calibration
solution (3.3)
Formatted: Font: Not Italic
Formatted: cite_sec
[SOURCE: ISO 1503915839:2003, 3.13]
Formatted: Source
3.5
Formatted: std_publisher
reagent validity test
stability test of buffer and indicator reagent solution required for total residual oxidant (3.10)
Formatted: cite_sec
measurement
3.6
Formatted: cite_sec
response time
Formatted: cite_sec
time interval between the instant when the TROtotal residual oxidant sensor (3.11) is subjected to a zero
Formatted: cite_sec
solution (3.14) in determinand (3.4) value and the instant when the readings cross a band defined by 90 %
of span solution (3.8)
Formatted: Font: Not Italic
Formatted: cite_sec
3.7
span drift Formatted: Font: 11 pt
variation of the indicated value for the span of the measuring device for a certain period of time
Formatted: Space After: 0 pt, Line spacing: single
2 © ISO 2022 – All rights reserved
2 © ISO 2023 – All rights reserved

---------------------- Page:
...

FINAL
INTERNATIONAL ISO/FDIS
DRAFT
STANDARD 23780-1
ISO/TC 8
Ships and marine technology —
Secretariat: SAC
Procedure for testing the performance
Voting begins on:
2023-02-16 of continuous monitoring TRO sensors
used in ships —
Voting terminates on:
2023-04-13
Part 1:
DPD sensors
Navires et technologie maritime — Méthode de contrôle des
performances des capteurs de TRO de surveillance continue utilisés à
bord des navires —
Partie 1: Capteurs à la DPD
RECIPIENTS OF THIS DRAFT ARE INVITED TO
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION
OF ANY RELEVANT PATENT RIGHTS OF WHICH
THEY ARE AWARE AND TO PROVIDE SUPPOR TING
DOCUMENTATION.
IN ADDITION TO THEIR EVALUATION AS
Reference number
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/FDIS 23780-1:2023(E)
LOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON
OCCASION HAVE TO BE CONSIDERED IN THE
LIGHT OF THEIR POTENTIAL TO BECOME STAN-
DARDS TO WHICH REFERENCE MAY BE MADE IN
NATIONAL REGULATIONS. © ISO 2023

---------------------- Page: 1 ----------------------
ISO/FDIS 23780-1:2023(E)
FINAL
INTERNATIONAL ISO/FDIS
DRAFT
STANDARD 23780-1
ISO/TC 8
Ships and marine technology —
Secretariat: SAC
Procedure for testing the performance
Voting begins on:
of continuous monitoring TRO sensors
used in ships —
Voting terminates on:
Part 1:
DPD sensors
Navires et technologie maritime — Méthode de contrôle des
performances des capteurs de TRO de surveillance continue utilisés à
bord des navires —
Partie 1: Capteurs à la DPD
COPYRIGHT PROTECTED DOCUMENT
© ISO 2023
All rights reserved. Unless otherwise specified, or required in the context of its implementation, no part of this publication may
be reproduced or utilized otherwise in any form or by any means, electronic or mechanical, including photocopying, or posting on
the internet or an intranet, without prior written permission. Permission can be requested from either ISO at the address below
or ISO’s member body in the country of the requester.
RECIPIENTS OF THIS DRAFT ARE INVITED TO
ISO copyright office
SUBMIT, WITH THEIR COMMENTS, NOTIFICATION
OF ANY RELEVANT PATENT RIGHTS OF WHICH
CP 401 • Ch. de Blandonnet 8
THEY ARE AWARE AND TO PROVIDE SUPPOR TING
CH-1214 Vernier, Geneva
DOCUMENTATION.
Phone: +41 22 749 01 11
IN ADDITION TO THEIR EVALUATION AS
Reference number
Email: copyright@iso.org
BEING ACCEPTABLE FOR INDUSTRIAL, TECHNO-
ISO/FDIS 23780-1:2023(E)
Website: www.iso.org
LOGICAL, COMMERCIAL AND USER PURPOSES,
DRAFT INTERNATIONAL STANDARDS MAY ON
Published in Switzerland
OCCASION HAVE TO BE CONSIDERED IN THE
LIGHT OF THEIR POTENTIAL TO BECOME STAN-
DARDS TO WHICH REFERENCE MAY BE MADE IN
ii
  © ISO 2023 – All rights reserved
NATIONAL REGULATIONS. © ISO 2023

---------------------- Page: 2 ----------------------
ISO/FDIS 23780-1:2023(E)
Contents Page
Foreword .iv
Introduction .v
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
4 Determination of the measurement procedure . 3
5 Preparation for the test . 4
5.1 Confirmation of effective chlorine concentration . 4
5.2 Preparation for chlorine standard solution. 4
5.3 V erification of standard solution . 4
5.4 Interferences . 5
5.4.1 General . 5
5.4.2 Salinity . 5
5.4.3 Manganese compounds . 5
5.4.4 Colour and turbidity . 5
5.4.5 Dissolved oxygen . 5
5.4.6 Temperature . 5
5.5 Procedures for determining the impact on interferences . 5
5.5.1 General . 5
5.5.2 Salinity . 6
5.5.3 Temperature . 6
5.5.4 Turbidity (optional) . 6
5.6 Test equipment and apparatus . 7
6 Pre-test (checklist and method/specifications) . 7
6.1 General . 7
6.2 Abnormal water level test . 7
6.3 Sample temperature test . 8
7 Test procedures . 8
7.1 Main test . 8
7.1.1 General . 8
7.1.2 Linearity test . 8
7.1.3 Zero drift test . 9
7.1.4 MDL (method detection limit) test . 10
7.1.5 Span drift and repeatability test . 11
7.1.6 Response time test .12
7.1.7 Total performance test .12
7.1.8 Reagent validity test .13
7.2 TRO sensor unit environmental test . 14
7.2.1 General . 14
7.2.2 Testing items . 14
7.2.3 IP test . 14
7.2.4 Explosion test . 14
7.3 Test report . 14
Annex A (normative) The test bench facilities .16
Annex B (normative) Information to be supplied by manufacturer .18
Annex C (normative) Chlorine concentration test sheet .19
Bibliography .20
iii
© ISO 2023 – All rights reserved

---------------------- Page: 3 ----------------------
ISO/FDIS 23780-1:2023(E)
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular, the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received (see www.iso.org/patents).
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation of the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO's adherence to
the World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT), see
www.iso.org/iso/foreword.html.
This document was prepared by Technical Committee ISO/TC 8, Ships and marine technology.
A list of all parts in the ISO 23780 series can be found on the ISO website.
Any feedback or questions on this document should be directed to the user’s national standards body. A
complete listing of these bodies can be found at www.iso.org/members.html.
iv
  © ISO 2023 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/FDIS 23780-1:2023(E)
Introduction
The International Maritime Organization (IMO) adopted the International Convention for the Control
[1]
and Management of Ships' Ballast Water and Sediments (BWM Convention) in 2004 . The Convention
entered into force in September 2017 and requires that ballast water management systems (BWMS) be
installed on board vessels according to an implementation schedule in the ensuing years. The Convention
requires that the use of active substances by BWMS be evaluated using the Procedure for approval of
ballast water management systems that make use of active substances (G9 Procedure of the Convention)
[2]
to ensure that the use of the BWMS does not pose any unacceptable risk to the environment, human
health, property or resources. Oxidants are an important active substance associated with certain
treatment systems. Total residual oxidant (TRO) is a critical process control parameter during both
uptake and discharge of oxidant treatment technologies. TRO sensors are also used for compliance
monitoring (maximum allowable discharge concentration) of ship discharges.
Sensors that monitor TRO are used in oxidant-based ballast water treatment to control both oxidant
dose at ballast uptake and oxidant neutralization at ballast discharge. On uptake, the TRO sensor is
used to monitor and control the addition of oxidant. This will vary depending upon the oxidant demand
(due to organic matter) in the water being treated. On discharge, the TRO sensor monitors and controls
the neutralization of any residual oxidant prior to overboard discharge, consistent with the approval by
the IMO Marine Environment Protection Committee (MEPC). Consequently, the TRO sensor is expected
to provide reliable, real-time monitoring.
N,N-Diethyl-p-phenylenediamine (DPD) is used in total and free chlorine (Cl ) colorimetric analysis
2
because it reacts with hypochlorous acid and hypochlorite ions. Most conventional TRO analysis
methods apply to drinking water and low-saline water treatment in land-based facilities. Using these
methods, most of the TRO measurements are made under stable environmental conditions, for example
in terms of continuous flow and water properties. By contrast, the BWMS TRO measurements must
consider varying conditions. Several factors interfere with TRO measurements. For example, the salts
and other ions in seawater can affect the development of a specific colour that is quantitatively related
to the TRO concentration in water. The pH and water temperature may affect the oxidation potential of
Cl in water, interfering with the TRO measurement. The production of a relatively weak colour may be
2
due to shadow effects from particles or organic matter in water.
The testing of the performance of TRO sensors in water is currently per ISO 7393-3. This method is
appropriate for drinking water and other waters where additional halogens like bromine, iodine, and
other oxidizing agents are present in almost negligible amounts. Seawater and waters containing
bromides and iodides comprise a group for which special procedures are to be carried out. TRO sensors
are now being used on ships, which are often in marine waters, and a method for evaluating the potential
substances that may interfere with both shipboard and marine waters is currently not available.
v
© ISO 2023 – All rights reserved

---------------------- Page: 5 ----------------------
FINAL DRAFT INTERNATIONAL STANDARD ISO/FDIS 23780-1:2023(E)
Ships and marine technology — Procedure for testing the
performance of continuous monitoring TRO sensors used
in ships —
Part 1:
DPD sensors
1 Scope
This document provides a method to ensure the performance of continuous monitoring TRO sensors,
which can be installed in a BWMS or elsewhere in a ship, taking into consideration environmental
factors associated with shipboard conditions, such as high salinity, vibration, variation in humidity
and temperature, and predictable sea conditions. This document is intended for use by BWMS
manufacturers, sensor manufacturers, testing agencies, and ship owners to verify the performance of a
TRO sensor unit.
This document is intended to provide requirements and guidance for TRO sensors that use the N,
N-diethyl-1,4-phenylene diamine (DPD) method. These requirements and guidance are applicable to
testing of sensor units in a laboratory prior to installation. This document identifies:
— performance characteristics to be defined by manufacturers of TRO sensors used in the shipboard
treatment environment (e.g. salinity range);
— pre-qualification and performance procedures to document instrument capabilities;
— performance test procedures to be used in different environmental conditions.
2 Normative references
The following documents are referred to in the text in such a way that some or all of their content
constitutes requirements of this document. For dated references, only the edition cited applies. For
undated references, the latest edition of the referenced document (including any amendments) applies.
IACS UR E10, Test specification for type approval
ISO 7393-2, Water quality — Determination of free chlorine and total chlorine — Part 2: Colorimetric
method using N,N-dialkyl-1,4-phenylenediamine, for routine control purposes
IEC 60529, Degrees of protection provided by enclosures (IP Code)
IEC 60079 (all parts), Explosive atmospheres
ISO/IEC 17025, General requirements for the competence of testing and calibration laboratories
3 Terms and definitions
For the purposes of this document, the following terms and definitions apply.
ISO and IEC maintain terminology databases for use in standardization at the following addresses:
— ISO Online browsing platform: available at https:// www .iso .org/ obp
— IEC Electropedia: available at https:// www .electropedia .org/
1
© ISO 2023 – All rights reserved

---------------------- Page: 6 ----------------------
ISO/FDIS 23780-1:2023(E)
3.1
abnormal water level
minimum water level that can be measured in measurement cell
3.2
active substance
AS
substance or organism, including a virus or fungus that has a general or specific action on or against
harmful aquatic organisms and pathogens
[SOURCE: IMO, Resolution MEPC.169(57):2008, 2.1]
3.3
calibration solution
solution containing a substance or mixture of substances giving a defined value of the determinand
(3.4) and used for calibration of the total residual oxidant sensor (3.11) instrument
3.4
determinand
property or substance that is required to be measured and reflected by, or present in, a calibration
solution (3.3)
[SOURCE: ISO 15839:2003, 3.13]
3.5
reagent validity test
stability test of buffer and indicator reagent solution required for total residual oxidant (3.10)
measurement
3.6
response time
time interval between the instant when the total residual oxidant sensor (3.11) is subjected to a zero
solution (3.14) in determinand (3.4) value and the instant when the readings cross a band defined by
90 % of span solution (3.8)
3.7
span drift
variation of the indicated value for the span of the measuring device for a certain period of time
3.8
span solution
solution with a certain percentage of analyte concentration within the measuring range specified for
the instrument
3.9
standard solution
set of simple or synthetic reference solutions having different analyte concentrations
Note 1 to entry: The zero solution is, in principle, the solution having zero concentration of the analyte.
3.10
total residual oxidant
TRO
complete amount of oxidising compounds in water, including biocidal compounds added via chemical
injection, electrolysis, or ozonation, such as chlorine gas, chlorine dioxide (ClO ), ozone (O ), or
2 3
chemicals that are quickly converted to sodium hypochlorite
Note 1 to entry: TROs also include compounds derived from reactions with primary oxidants, such as hypohalites,
hypohalous acids, chloramines, bromamines, and N-Cl linked compounds.
2
  © ISO 2023 – All rights reserved

---------------------- Page: 7 ----------------------
ISO/FDIS 23780-1:2023(E)
Note 2 to entry: Active substances (AS) should be defined by the ballast water management system (BWMS)
manufacturer, which should be controlled as intended through the risk assessment of the BWMS. Then a
BWMS with an AS defined by the manufacturer would be evaluated with equivalent oxidation potential of TRO.
Therefore, the concept of TRO in this application of BWMS is rather conceptual. Even some potential substances
in treated water such as chlorine gas, chloramines and other disinfection by-products are not considered and
proposed as the AS or TRO by the manufacturer.
3.11
total residual oxidant sensor
TRO sensor
sensor which measures the concentration of total residual oxidant (3.10)
3.12
TRO sensor unit
TSU
device designed for processes that require continuous in-line monitoring of total residual oxidant (TRO)
(3.10) levels
Note 1 to entry: It monitors the concentration levels of TRO during ballasting and de-ballasting.
Note 2 to entry: It should be composed of buffer solution, indicator and sample measurement cell separately.
3.13
zero drift
variation of the indicated value for the zero of the measuring device for a certain period of time
3.14
zero solution
solution having no residual oxidant, such as purified water, which can be used for zero-point solution
4 Determination of the measurement procedure
The laboratory test is designed to demonstrate the performance characteristics of the TRO sensor that
will be installed in the ballast water management systems.
The manufacturer shall check the general requirements of the TRO sensor unit (TSU) in accordance
with Annex A. The manufacturer shall also provide the information to the testing agency as specified in
Annex B, to conduct the performance evaluation of the TSU in the laboratory. The test bench facilities
(see Annex A) can be slightly different for each test environment. However, the following conditions
shall be applied in all instruments.
The test bench facilities shall match the requirements specified for the instruments by the manufacturer.
The facilities shall include the ability to record (manually or automatically) readings of the sensor
equipment in analogue or digital form.
Where appropriate, it shall be possible to change the calibration solution determinand value measured
by the instrument within less than 10 % of the response time declared by the manufacturer. Typical
examples where this is not appropriate are the determination of turbidity and electrical conductivity.
The facilities shall include laboratory instruments for analysis of the required determinand(s). The
methods used and test results shall be reported (see 7.3).
After confirming the performance of the interferences of the TRO sensor (see 5.4 and 5.5), the
manufacturer should present it to the test agency, which should then verify the performance provided
by the manufacturer.
A schematic of the test procedure is shown in Figure 1.
3
© ISO 2023 – All rights reserved

---------------------- Page: 8 ----------------------
ISO/FDIS 23780-1:2023(E)
Figure 1 — Schematic of the test procedure
5 Preparation for the test
5.1 Confirmation of effective chlorine concentration
There are two ways to make a chlorine standard solution: solid and liquid. When using solid or liquid
standard matter, determine the effective chlorine concentration before preparing the standard solution.
Steps for determining the effective concentration of chlorine shall be in accordance with Annex C.
5.2 Preparation for chlorine standard solution
The standard solution shall be prepared at the time of testing and verified in accordance with
ISO 7393-2, using the following procedure.
a) Standard stock solution (1 000 mg/l): Dissolve the amount obtained in 5.3 or quantified liquid
reagent and fill distilled water to 1 000 ml.
b) Pour 100 ml of the standard stock solution (calcium hypochlorite) into the measured 9,9 l distilled
water in container (= 10 mg/l).
c) As an analysis result, the sample should be diluted and analysed again if the measurement value
gets out of specification of the instrument.
5.3 Verification of standard solution
a) Verify the standard solution is not expired by measuring values of the 50 % sea water span solution
two times directly after making the solution and passing a certain time period.
4
  © ISO 2023 – All rights reserved

---------------------- Page: 9 ----------------------
ISO/FDIS 23780-1:2023(E)
b) Fresh liquid standard solution shall be prepared from solid calcium hypochlorite immediately prior
to each test and directly discarded after the test is complete.
5.4 Interferences
5.4.1 General
Potential sources of interferences to the measurement are identified in this clause. In this test, an
interference measurement procedure is presented to consider the effect of interferences.
The N, N-diethyl-1,4-phenylene diamine (DPD) method detects oxidants used as disinfectants: chlorine
(Cl ), chlorine dioxide (ClO ), ozone (O ), bromine (Br ), and disinfection by-products such as chlorite,
2 2 3 2
chlorate, bromite and bromate.
Based on the TRO sensor equipment and test environment conditions, the testing organization shall
prepare the test bench, check the general equipment items, and test them in accordance with Annexes A
and B.
The calibration test of the TRO sensor shall be performed taking into account turbidity, salinity and
temperature.
5.4.2 Salinity
Halogen ions in saline-containing solutions can cause a relatively low colour reaction, interfering with
TRO measurements in sea water.
5.4.3 Manganese compounds
Manganese can exist in oxidation states of +2 through +7. The higher oxidation states, typically +3 to
+7, will interfere with the DPD method. Free chlorine reacts to oxidize soluble manganese compounds.
5.4.4 Colour and turbidity
One critical problem when applying colorimetric procedures to samples is interference from turbidity
and colour in the water. For certain parameters, a preliminary filtration can be performed to remove
particulate matter from the sample without any modification of oxidant’s potential, nor time delay to
measuring. The residual sample colour is “zeroed” at the measuring wavelength.
5.4.5 Dissolved oxygen
The indicator reagent will be oxidized by dissolved oxygen at higher pH. The reagent should always be
maintained in a buffer with pH between 6 and 8.
5.4.6 Temperature
Higher temperatures increase the oxidation reaction rates of free chlorine with various organic and
inorganic compounds.
5.5 Procedures for determining the impact on interferences
5.5.1 General
There are several factors that interfere with TRO, but this document presents a test procedure to
confirm the effects of salinity, temperature, and turbidity, which are the major interferences. These
tests shall be performed within the range agreed upon by the manufacturer and the testing agency. The
testing institute should check this course is in line with the items suggested by the manufacturer before
this test, particularly in terms of sensor performance. The purpose of interference testing is to assess
the particles suspended in fluid that scatter and absorb light at the TRO measurement wavelengths.
5
© ISO 2023 – All rights reserved

---------------------- Page: 10 ----------------------
ISO/FDIS 23780-1:2023(E)
5.5.2 Salinity
Water for performance testing shall be prepared for up to three salinities as required; seawater,
brackish water and fresh water. Clients can select the salinity section to be tested among the water
conditions in Table 1 and request it to the test agency. Seawater and brackish
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.