Radiological protection — Medical electron accelerators — Requirements and recommendations for shielding design and evaluation

ISO 16645:2016 is applicable to medical electron linear accelerators i.e. linear accelerators with nominal energies of the beam ranging from 4 MV to 30 MV, including particular installations such as robotic arm, helical intensity modulated radiotherapy devices and dedicated devices for intra operative radiotherapy (IORT) with electrons. The cyclotrons and the synchrotrons used for hadrontherapy are not considered. The radiation protection requirements and recommendations given in ISO 16645:2016 cover the aspects relating to regulations, shielding design goals and other design criteria, role of the manufacturers, of the radiation protection officer or qualified expert and interactions between stakeholders, radiations around a linear accelerator, shielding for conventional and special devices (including shielding materials and transmission values, calculations for various treatment room configurations, duct impact on radiation protection) and the radiological monitoring (measurements).

Radioprotection — Accélérateurs médicaux d'électrons — Exigences et recommandations pour la conception et l'évaluation du blindage

L'ISO 16645:2016 s'applique aux accélérateurs linéaires d'électrons médicaux, c'est-à-dire aux accélérateurs linéaires avec des énergies nominales de faisceau dans la gamme de 4 MV à 30 MV, y compris les installations particulières telles que le bras robotisé, les appareils de radiothérapie hélicoïdale avec modulation d'intensité et les appareils dédiés à la radiothérapie peropératoire (IORT) avec électrons. Les cyclotrons et les synchrotrons utilisés pour l'hadronthérapie ne sont pas considérés. Les exigences et recommandations en matière de radioprotection données dans l'ISO 16645:2016 couvrent les aspects liés aux réglementations, aux objectifs de conception de la protection radiologique et autres critères de conception, au rôle des fabricants, de la personne compétente en radioprotection ou de l'expert qualifié et aux interactions entre les parties prenantes, aux rayonnements autour d'un accélérateur linéaire, à la protection pour les appareils conventionnels et spéciaux (y compris les matériaux de protection et les valeurs de transmission, les calculs pour différentes configurations de salle de traitement, l'impact des conduits sur la radioprotection) et à la surveillance radiologique (mesurages). NOTE 1 L'Annexe A procure des valeurs de transmission pour les matériaux de protection les plus courants. NOTE 2 L'Annexe B fournit des données servant au calcul de la protection radiologique. NOTE 3 L'Annexe C donne un exemple de calcul pour un appareil conventionnel et une chicane standard.

General Information

Status
Published
Publication Date
18-Sep-2016
Current Stage
9093 - International Standard confirmed
Completion Date
04-Jul-2022
Ref Project

Buy Standard

Standard
ISO 16645:2016 - Radiological protection -- Medical electron accelerators -- Requirements and recommendations for shielding design and evaluation
English language
76 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16645:2016 - Radiological protection -- Medical electron accelerators -- Requirements and recommendations for shielding design and evaluation
English language
76 pages
sale 15% off
Preview
sale 15% off
Preview
Standard
ISO 16645:2016 - Radioprotection -- Accélérateurs médicaux d'électrons -- Exigences et recommandations pour la conception et l'évaluation du blindage
French language
83 pages
sale 15% off
Preview
sale 15% off
Preview

Standards Content (Sample)

INTERNATIONAL ISO
STANDARD 16645
First edition
2016-10-01
Corrected version
2016-11-15
Radiological protection — Medical
electron accelerators — Requirements
and recommendations for shielding
design and evaluation
Radioprotection — Accélérateurs médicaux d’électrons — Exigences
et recommandations pour la conception et l’évaluation du blindage
Reference number
ISO 16645:2016(E)
©
ISO 2016

---------------------- Page: 1 ----------------------
ISO 16645:2016(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2016, Published in Switzerland
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – All rights reserved

---------------------- Page: 2 ----------------------
ISO 16645:2016(E)

Contents Page
Foreword .v
Introduction .vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 1
3.1 Quantities . 1
3.2 Definitions . 4
4 Shielding design goals and other design criteria . 6
4.1 Shielding design goals. 6
4.2 Shielding design assumptions . 7
5 Role of the manufacturers, of the radiation protection officer or qualified expert
and interactions between stakeholders . 8
5.1 General . 8
5.2 Linear accelerator manufacturer . 8
5.3 Shielding material vendor . 9
5.4 Architectural firm/general contractor .10
5.5 Radiation protection officer or qualified expert .10
5.6 The licensee .11
6 Radiation fields around a linear electron accelerator .11
6.1 General .11
6.2 X-ray radiation .11
6.2.1 Primary X-ray beam .11
6.2.2 Primary electron beam bremsstrahlung .12
6.2.3 Secondary X-ray radiation .12
6.2.4 Tertiary X-ray radiation.13
6.3 Neutron radiation .13
6.3.1 General.13
6.3.2 Direct neutron radiation .14
6.3.3 Scattered and thermal neutron radiation.14
6.3.4 Primary barrier neutron radiation .15
6.4 γ radiation .15
6.4.1 General.15
6.4.2 Maze γ radiation . .15
6.4.3 Door γ radiation.15
6.4.4 Primary barrier γ radiation .15
6.4.5 Air γ radiation .16
7 Shielding materials and transmission values .16
8 General formalism for shielding calculation .18
9 Shielding calculation for conventional devices .20
9.1 General .20
9.2 Primary barriers .20
9.2.1 Radiation components .20
9.2.2 Barrier with a unique material .21
9.2.3 Barrier with multiple layers . .21
9.3 Secondary barriers .22
9.3.1 Radiation components .22
9.3.2 Barrier with a unique material .23
9.3.3 Barriers with multiple layers .24
10 Doors and mazes .24
10.1 General .24
© ISO 2016 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO 16645:2016(E)

10.2 Radiation components .25
10.3 Standard maze .25
10.3.1 Maze X-ray scatter calculations .25
10.3.2 X-ray direct Leakage . . .30
10.3.3 Maze neutron and capture gamma calculations .31
10.4 Two legged maze .33
10.5 No maze - Direct-shielded doors .34
10.5.1 General.34
10.5.2 Shielding at the far side of a direct-shielded door entrance .35
10.5.3 Shielding at the near side of a direct-shielded door entrance .37
10.6 No door at maze entrance .39
10.7 Door Calculations .40
10.7.1 General.40
10.7.2 Maze door calculations .40
10.7.3 Direct Shielded Door Calculations .41
11 Shielding calculations for special devices .41
11.1 General .41
11.2 Robotic arm accelerator .41
11.3 Helical intensity modulated radiotherapy .42
11.4 Dedicated device for intra operative radiotherapy with electrons .42
12 Ducts .43
12.1 Duct impact on radiation protection .43
12.2 Recommended location and geometry .43
12.3 Additional shielding .44
12.3.1 General.44
12.3.2 Neutron and capture gamma radiation passing through the interior of the
shielded duct .44
12.3.3 X scattered radiation passing through the interior of the shielded duct .45
12.3.4 Scattered radiation passing through the walls of the duct shielding .46
12.3.5 Dose equivalent at HVAC duct exterior opening .46
13 Special considerations .46
13.1 Skyshine .46
13.1.1 General.46
13.1.2 X-ray skyshine radiation .46
13.1.3 Neutron skyshine radiation .48
13.2 Groundshine radiations .49
13.3 Joints and junctions .49
14 Shielding evaluation (experimental verification) .49
14.1 General .49
14.2 Measuring equipment and methodology .50
14.3 Evaluation .50
15 Indication, warning signs, interlocks .52
Annex A (informative) Tenth value layers for the most common shielding materials .53
Annex B (informative) Supporting data for shielding calculations .66
Annex C (informative) Example of calculation for conventional device and standard maze .68
Bibliography .75
iv © ISO 2016 – All rights reserved

---------------------- Page: 4 ----------------------
ISO 16645:2016(E)

Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with ISO, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.
The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the
editorial rules of the ISO/IEC Directives, Part 2. www.iso.org/directives
Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO shall not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or
on the ISO list of patent declarations received. www.iso.org/patents
Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.
For an explanation on the meaning of ISO specific terms and expressions related to conformity
assessment, as well as information about ISO’s adherence to the WTO principles in the Technical
Barriers to Trade (TBT), see the following URL: Foreword - Supplementary information
The committee responsible for this document is ISO/TC 85, Nuclear energy, nuclear technologies, and
radiological protection, Subcommittee SC 2, Radiological protection.
This corrected version of ISO 16645:2016 incorporates the correction of Tables A.9 and C.6.
© ISO 2016 – All rights reserved v

---------------------- Page: 5 ----------------------
ISO 16645:2016(E)

Introduction
Radiotherapy uses external beam radiation to kill cancer cells and shrink tumours. The use of electron
linear accelerators to administer external beam radiation has spread during recent decades and is now
common throughout the world. These accelerators deliver high energy electron and photon beams with
increasingly high dose rates. Although the use of radiotherapy is well established, irradiation techniques
have continued to evolve and are becoming increasingly complex. Examples include modulation of beam
intensity, availability of high dose rate modes, arctherapy, helical intensity modulated radiotherapy,
robotic arm accelerators, and dedicated devices for intra-operative radiotherapy. The shielding design
of treatment rooms has been evolving with these changes. The higher radiation workload associated
with most of these techniques can impact the shielding materials used. The irradiation technique can
also impact the geometry to be considered in the shielding calculations.
IEC 60601-2-1 relates to the design and the construction of the accelerators in order to ensure the
[1] [2][3]
safety of their operation . In addition, several national or international (IAEA Safety Reports

Series Report No. 47, 2006) reports propose recommendations concerning the installation and the
exploitation of these accelerators, the safety devices, the design and the calculation of protections, the
[4]
radiological control and monitoring. National standards have been established in certain countries
[5]
. Moreover national regulations impose particular rules of protection against radiation, in particular
relating to the definition of the controlled areas and the calculation of shielding.
Taking into account the developments of new irradiation techniques and of new designs of treatment
room facilities on the one hand, and the variety of guides or normative documents on the other hand,
it appeared judicious to establish an international standard to be used as a general framework. This
standard is intended to be complementary to the other international standards (IEC and IAEA).
The following items are discussed in the standard:
— types of accelerators: conventional accelerators with and without flattening filter (FF and FFF
operating modes), devices for helical intensity modulated radiotherapy and robotic arm accelerator,
dedicated machines for intra-operative radiotherapy;
— radiation fields: electrons, X photons and neutrons (direct, scattered, leakage), neutron capture
gamma rays;
— Treatment room geometry: maze without and with door, no maze with direct door;
— materials of protection: concrete (ordinary or high density), metals, laminated barriers (concrete
and metal), hydrogenated materials, earth and others;
— design of the radiotherapy facility:
— calculation methods of the shielding, including neutrons, various types of installations and shielding
geometries;
— evaluation of the impact of the maze and calculation of the protection of the entrance door;
— evaluation of the impact of the ducts (ventilation and air-conditioning, high voltage and fluids) and
additional protections;
— shielding design assumption and goals;
— Radiation survey of the completed installation to ensure national requirements have been met and
the shielding and design is fit for purpose after installation of the accelerator.
vi © ISO 2016 – All rights reserved

---------------------- Page: 6 ----------------------
INTERNATIONAL STANDARD ISO 16645:2016(E)
Radiological protection — Medical electron accelerators —
Requirements and recommendations for shielding design
and evaluation
1 Scope
This International Standard is applicable to medical electron linear accelerators i.e. linear accelerators
with nominal energies of the beam ranging from 4 MV to 30 MV, including particular installations
such as robotic arm, helical intensity modulated radiotherapy devices and dedicated devices for intra
operative radiotherapy (IORT) with electrons.
The cyclotrons and the synchrotrons used for hadrontherapy are not considered.
The radiation protection requirements and recommendations given in this International Standard
cover the aspects relating to regulations, shielding design goals and other design criteria, role of
the manufacturers, of the radiation protection officer or qualified expert and interactions between
stakeholders, radiations around a linear accelerator, shielding for conventional and special devices
(including shielding materials and transmission values, calculations for various treatment room
configurations, duct impact on radiation protection) and the radiological monitoring (measurements).
NOTE 1 Annex A provides transmission values for the most common shielding materials.
NOTE 2 Annex B provides supporting data for shielding calculation.
NOTE 3 Annex C provides an example of calculation for conventional device and standard maze.
2 Normative references
The following documents, in whole or in part, are normatively referenced in this document and are
indispensable for its application. For dated references, only the edition cited applies. For undated
references, the latest edition of the referenced document (including any amendments) applies.
IEC 60976, Medical electrical equipment — Medical electron accelerators — Functional performance
characteristics
IAEA Safety Reports Series Report No. 47, Radiation protection in the Design of Radiotherapy
Facilities (2006)
3 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC 60976 and the following apply.
3.1 Quantities
3.1.1
absorbed dose
D
quotient of dε by dm, where dε is the mean energy imparted to matter of mass dm thus

D =
dm
© ISO 2016 – All rights reserved 1

---------------------- Page: 7 ----------------------
ISO 16645:2016(E)

Note 1 to entry: In this document, the absorbed dose is defined for radiation produced by a linear accelerator at a
specific location: the absorbed dose to water at the isocentre (at 1 m from the source for conventional devices) at a
reference depth in water in electron equilibrium conditions (for example at the depth of maximum absorbed dose).
−1
Note 2 to entry: The unit of absorbed dose is joule per kilogram (J·kg ), and its special name is gray (Gy).
[6]
[SOURCE: ISO 12749-2:2013, 4.1.6.7]
3.1.2
absorbed dose rate
output rate
DR
o
dose absorbed per unit of time
Note 1 to entry: In this International Standard, in the absence of specific indication, the absorbed dose rate is
defined for radiation produced by a linear accelerator at a specific location: the absorbed dose rate to water at the
isocentre (at 1 m from the source for conventional devices) at a reference depth in water in electron equilibrium
conditions (for example at the depth of maximum absorbed dose).
−1
Note 2 to entry: The unit of absorbed dose rate is gray per second (Gy·s ). The usual unit for medical accelerators
−1
is gray per hour (Gy·h ).
3.1.3
dose equivalent
H
product of D and Q at a point in tissue, where D is the absorbed dose (3.1.1) and Q is the quality factor
for the specific radiation at this point, thus: H = D × Q
−1
Note 1 to entry: The unit of dose equivalent is joule per kilogram (J·kg ), and its special name is sievert (Sv).
[6]
[SOURCE: ISO 12749-2:2013, 4.1.6.8]
3.1.4
IMRT ratio
C
I
ratio of the average monitor unit per unit prescribed absorbed dose needed for IMRT (MU ) and the
IMRT
monitor unit per unit absorbed dose for conventional treatment (MU )
conv
MU
IMRT
C =
I
MU
CONV
3.1.5
instantaneous dose-equivalent rate
IDR
–1
“ambient/personal” dose-equivalent rate (Sv·h ) as measured with the linear accelerator operating at
–1
the absorbed dose rate DR (Gy·h )
o
Note 1 to entry: This is the direct reading of the ratemeter that gives a stable reading in dose-equivalent per hour.
IDR is specified at a reference point (30 cm) beyond the penetrated barrier.
3.1.6
effective dose
E
summation of all the tissue equivalent doses, each multiplied by the appropriate tissue weighting factor
3.1.7
occupancy factor
T
fraction of time the areas adjacent to the treatment room are occupied by an individual or group during
linear accelerator operation
2 © ISO 2016 – All rights reserved

---------------------- Page: 8 ----------------------
ISO 16645:2016(E)

3.1.8
orientation or use factor
U
fraction of the time during which the radiation under consideration is directed at a particular barrier
3.1.9
reflection coefficient
α
fraction of radiation (e.g., fluence, energy fluence) expressed by the ratio of the amount backscattered
to that incident
3.1.10
shielding design goal
P
practical values of dose equivalent, for a single radiotherapy source or set of sources, evaluated at a
reference point beyond a protective barrier
Note 1 to entry: The shielding design goals ensure that the respective annual values for effective dose limit
defined by national regulation or IAEA/ICRP for controlled and uncontrolled areas are not exceeded.
3.1.11
(patient) scatter fraction
a(θ)
ratio of absorbed dose at 1 m from a tissue-equivalent scattering object to the absorbed dose measur
...

DRAFT INTERNATIONAL STANDARD
ISO/DIS 16645
ISO/TC 85/SC 2 Secretariat: AFNOR
Voting begins on: Voting terminates on:
2015-02-18 2015-05-18
Radiological protection — Medical electron accelerators —
Requirements and recommendations for shielding design
and evaluation
Radioprotection — Accélérateurs médicaux à électrons — Exigences et recommandations pour la
conception et l’évaluation du blindage
ICS: 13.280
THIS DOCUMENT IS A DRAFT CIRCULATED
FOR COMMENT AND APPROVAL. IT IS
THEREFORE SUBJECT TO CHANGE AND MAY
NOT BE REFERRED TO AS AN INTERNATIONAL
STANDARD UNTIL PUBLISHED AS SUCH.
IN ADDITION TO THEIR EVALUATION AS
BEING ACCEPTABLE FOR INDUSTRIAL,
TECHNOLOGICAL, COMMERCIAL AND
USER PURPOSES, DRAFT INTERNATIONAL
STANDARDS MAY ON OCCASION HAVE TO
BE CONSIDERED IN THE LIGHT OF THEIR
POTENTIAL TO BECOME STANDARDS TO
WHICH REFERENCE MAY BE MADE IN
Reference number
NATIONAL REGULATIONS.
ISO/DIS 16645:2014(E)
RECIPIENTS OF THIS DRAFT ARE INVITED
TO SUBMIT, WITH THEIR COMMENTS,
NOTIFICATION OF ANY RELEVANT PATENT
RIGHTS OF WHICH THEY ARE AWARE AND TO
©
PROVIDE SUPPORTING DOCUMENTATION. ISO 2014

---------------------- Page: 1 ----------------------
ISO/DIS 16645:2014(E)

COPYRIGHT PROTECTED DOCUMENT
© ISO 2014
All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either ISO at the address below or ISO’s member body in the country of
the requester.
ISO copyright office
Case postale 56 • CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org
Published in Switzerland
ii © ISO 2014 – All rights reserved

---------------------- Page: 2 ----------------------
ISO/DIS 16645
Contents Page
Foreword . v
Introduction . vi
1 Scope . 1
2 Normative references . 1
3 Terms and definitions . 2
3.1 Quantities . 2
3.2 Definitions . 4
4 Shielding design goals and other design criteria . 7
4.1 Shielding design goals . 7
4.2 Shielding design assumptions . 7
5 Role of the manufacturers, of the radiation protection officer or qualified expert and
interactions between stakeholders . 8
5.1 General . 8
5.2 Electron accelerator manufacturer . 8
5.3 Shielding material vendor. 9
5.4 Architectural firm/general contractor . 10
5.5 Radiation protection officer or qualified expert . 10
6 Radiations around a medical electron accelerator . 11
6.1 General . 11
6.2 X-ray radiation . 12
6.2.1 Primary X-ray beam . 12
6.2.2 Primary electron beam bremsstrahlung . 12
6.2.3 Secondary X-ray radiation . 12
6.2.4 Tertiary X-ray radiation . 13
6.3 Neutron radiation . 13
6.3.1 General . 13
6.3.2 Direct neutron radiation . 14
6.3.3 Scattered and thermal neutron radiation . 15
6.3.4 Primary barrier neutron radiation . 15
6.4  radiation . 15
6.4.1 General . 15
6.4.2 Maze  radiation . 16
6.4.3 Door  radiation . 16
6.4.4 Primary barrier  radiation . 16
6.4.5 Air  radiation . 16
7 Shielding materials and transmission values . 16
8 General formalism for shielding calculation . 18
9 Shielding calculation for conventional devices . 20
9.1 General . 20
9.2 Primary barriers . 20
9.2.1 Radiation components . 20
9.2.2 Barrier with a unique material . 21
9.2.3 Barrier with multiple layers . 21
9.3 Secondary barriers . 22
9.3.1 Radiation components . 22
9.3.2 Barrier with a unique material . 22
9.3.3 Barriers with multiple layers . 24
© ISO 2014 – All rights reserved iii

---------------------- Page: 3 ----------------------
ISO/DIS 16645
10 Doors and mazes . 24
10.1 General . 24
10.2 Radiation components . 24
10.3 Standard maze . 25
10.3.1 Maze X-ray scatter calculations . 25
10.3.2 X-ray direct Leakage . 29
10.3.3 Maze neutron and capture gamma calculations . 30
10.4 Two legged maze . 32
10.5 No maze - Direct-shielded doors . 33
10.5.1 General . 33
10.5.2 Shielding at the far side of a direct-shielded door entrance . 33
10.5.3 Shielding at the near side of a direct-shielded door entrance . 35
10.6 No door at maze entrance . 37
11 Shielding calculation for special devices . 38
11.1 General . 38
11.2 Robotic arm . 38
11.3 Helical intensity modulated radiotherapy . 39
11.4 Dedicated device for intra operative radiotherapy with electrons . 40
12 Ducts . 40
12.1 Duct impact on radiation protection . 40
12.2 Recommended location and geometry . 40
12.3 Additional shielding. 41
12.3.1 General . 41
12.3.2 Neutron and capture gamma radiation passing through the interior of the shielded duct . 41
12.3.3 X scattered radiation passing through the interior of the shielded duct . 42
12.3.4 Scattered radiation passing through the walls of the duct shielding . 42
12.3.5 Dose equivalent at HVAC duct exterior opening . 42
13 Special considerations . 43
13.1 Skyshine . 43
13.1.1 General . 43
13.1.2 X-ray skyshine radiation . 43
13.1.3 Neutron skyshine radiation . 44
13.2 Groundshine radiations . 44
13.3 Joints and junctions . 45
14 Shielding evaluation (experimental verification) . 45
14.1 General . 45
14.2 Measuring equipment and methodology . 45
14.3 Evaluation . 46
15 Indication, warning signs, interlocks. 48
Annex A (informative) Tenth value layers for the most common shielding materials . 49
Annex B (informative) Example of calculation for conventional device and standard maze . 58
Bibliography . 65


iv © ISO 2014 – All rights reserved

---------------------- Page: 4 ----------------------
ISO/DIS 16645
Foreword
ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies
(ISO member bodies). The work of preparing International Standards is normally carried out through ISO
technical committees. Each member body interested in a subject for which a technical committee has been
established has the right to be represented on that committee. International organizations, governmental and
non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the
International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization.
International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2.
The main task of technical committees is to prepare International Standards. Draft International Standards
adopted by the technical committees are circulated to the member bodies for voting. Publication as an
International Standard requires approval by at least 75 % of the member bodies casting a vote.
Attention is drawn to the possibility that some of the elements of this document may be the subject of patent
rights. ISO shall not be held responsible for identifying any or all such patent rights.
ISO 16645 was prepared by Technical Committee ISO/TC 85, Nuclear energy, nuclear technologies, and
radiological protection, Subcommittee SC 2, Radiological protection.
This second/third/. edition cancels and replaces the first/second/. edition (), [clause(s) / subclause(s) /
table(s) / figure(s) / annex(es)] of which [has / have] been technically revised.
© ISO 2014 – All rights reserved v

---------------------- Page: 5 ----------------------
ISO/DIS 16645
Introduction
Radiotherapy is a major method for treating cancer. The use of electron linear accelerators was spread during
these last decades and became the technique of irradiation privileged in the industrialized countries. These
accelerators deliver high energy electron and photon beams (until approximately 30 MeV) with increasingly
high dose rates (up to around 25 Gy per minute at 1 m distance from the source). The irradiation techniques
are diversifying and becoming increasingly complex (modulation of beam intensity, modulation of the dose
rate, arctherapy, tomotherapy, robotic arm, dedicated devices for intra-operative radiotherapy). The design of
the treatment room facilities also changes (geometry and materials).
IEC 60601-2-1 relates to the design and the construction of the accelerators in order to ensure the safety of
their operation. In addition, several national (NCRP report No 151, 2005; IPEM report No 75, 2002) or
international (IAEA Safety Report Series report No 47, 2006) reports propose recommendations concerning
the installation and the exploitation of these accelerators, the safety devices, the design and the calculation of
protections, the radiological control and monitoring. National standards have been established in certain
countries (Ordinance of the DFI, Switzerland; DIN 6847-2, Germany). Moreover national regulations impose
particular rules of protection against radiation (France), in particular relating to the definition of the controlled
areas and the calculation of shielding.
Taking into account the developments of new irradiation techniques and of new designs of treatment room
facilities on the one hand, and the variety of guides or normative documents on the other hand, it appeared
judicious to establish an international standard being used as general framework. It intends to be
complementary to the other international standards (IEC and IAEA).
The following items are discussed in the standard:
 types of accelerators: conventional accelerators with and without flattening filter (FF and FFF operating
modes), devices for tomotherapy and robotic arm, dedicated machines for intra-operative radiotherapy;
 radiation fields: electrons, X photons and neutrons (direct, scattered, leakage), neutron capture gamma
rays;
 geometries of the treatment room: with standard maze, with two-legged maze, with short maze or without
maze, with maze but without door;
 materials of protection: concrete (ordinary or heavy), metals, laminated barriers (concrete and metal),
hydrogenated materials, earth and others;
 design of the radiotherapy facility:
 calculation methods of the shielding, including neutrons, various types of installations and shielding
geometries;
 evaluation of the impact of the maze and calculation of the protection of the entrance door;
 evaluation of the impact of the ducts (ventilation and air-conditioning, high voltage and fluids) and
additional protections;
 radiological goals;
 control (radiation protection) of the shielding after installation of the accelerator;
 ambient monitoring.
vi © ISO 2014 – All rights reserved

---------------------- Page: 6 ----------------------
DRAFT INTERNATIONAL STANDARD ISO/DIS 16645

Radiological protection — Medical electron accelerators —
Requirements and recommendations for shielding design and
evaluation
1 Scope
This standard is applicable to medical electron linear accelerators with energies ranging from 4 to 30 MeV,
including particular installations such as robotic arm, helical intensity modulated radiotherapy (tomotherapy)
devices and dedicated devices for intra operative radiotherapy (IORT) with electrons.
The cyclotrons and the synchrotrons used for hadrontherapy are not considered.
The radiation protection requirements and recommendations given in this standard cover the aspects relating
to regulations, shielding design goals and other design criteria, role of the manufacturers, of the radiation
protection officer or qualified expert and interactions between stakeholders, radiations around a medical
electron accelerator, biological shielding for conventional and special devices (including shielding materials
and transmission values, calculations for various bunker configurations, duct impact on radiation protection)
and the radiological monitoring (measurements).
2 Normative references
The following referenced documents are indispensable for the application of this document. For dated
references, only the edition cited applies. For undated references, the latest edition of the referenced
document (including any amendments) applies.
ISO 14152, Neutron radiation protection shielding — Design principles and considerations for the choice of
appropriate materials
ISO 12749-2, Nuclear energy, nuclear technologies, and radiological protection — Vocabulary — Part 2:
Radiological protection
NCRP Report No. 151, Structural shielding design and evaluation for megavoltage X- and gamma-ray
radiotherapy facilities (2005)
NCRP Report No. 79, Neutron contamination from medical electron accelerators (1984)
IAEA Safety Reports Series Report No. 47, Radiation protection in the Design of Radiotherapy Facilities
(2006)
IAEA Safety Standards, Radiation Protection and Safety of Radiation Sources: International Basic Safety
Standards, General Safety Requirements (2014)
Ordonnance du DFI sur la radioprotection s'appliquant aux accélérateurs délectrons utilisés à des fins
médicales (2004)
DIN 6847-2, Medical electron accelerators — Part 2: Rules for construction of structural radiation protection
Accélérateurs médicaux d'électrons (2014)
IPEM report No. 75, The design of Radiotherapy Treatment Room Facilities (2002)
© ISO 2014 – All rights reserved
1

---------------------- Page: 7 ----------------------
ISO/DIS 16645
IEC 60601-2-1, Medical electrical equipment — Part 2-1: Particular requirements for the basic safety and
essential performance of electron accelerators in the range 1 MeV to 50 MeV
IEC 60976 Ed. 2 B, Medical electrical equipment — Medical electron accelerators — Functional performance
characteristics
IEC/TR 61859, Guidelines for radiotherapy treatment rooms design
3 Terms and definitions
For the purposes of this document, the terms and definitions given in IEC 60976 and the following apply.
3.1 Quantities
3.1.1
absorbed dose
D
quotient of d by dm, where d is the mean energy imparted to matter of mass dm thus
d
D
dm
-1
Note 1 to entry: The unit of absorbed dose is joule per kilogram (J kg ). The special name for the unit of absorbed
dose is gray (Gy).
[SOURCE: ISO 12749-2:2013, 4.1.6.7]
3.1.2
absorbed dose rate
output rate
DR
o
–1
the absorbed dose rate (Gy h ) of radiation produced by a linear accelerator at a specific location: the
absorbed dose rate to water from photons (or electrons for an electron beam) at the isocentre (at 1 m from the
source for conventional devices) at a reference depth in water in electron equilibrium conditions (for example
at the depth of maximum absorbed dose)
3.1.3
dose equivalent
H
the product of absorbed dose (D) and the radiation weighting factor at a specified point of interest in tissue
–1
Note 1 to entry: The unit for H is joule per kilogram (J kg ), with the special name sievert (Sv).
3.1.4
instantaneous dose-equivalent rate
IDR
–1
the “ambient/personal” dose-equivalent rate (Sv h ) as measured with the accelerator operating at the
–1
absorbed dose rate DR (Gy h )
o
Note 1 to entry: This is the direct reading of the ratemeter that gives a stable reading in dose-equivalent per hour. IDR
is specified at a reference point (30 cm) beyond the penetrated barrier.
3.1.5
occupancy factor
T
the fraction of time the areas adjacent to the treatment room are occupied by an individual or group during
machine operation
© ISO 2014 – All rights reserved
2

---------------------- Page: 8 ----------------------
ISO/DIS 16645
3.1.6
orientation or use factor
U
fraction of the radiation workload during which the useful beam radiation under consideration is directed at a
particular barrier, is pointed toward the area in question
3.1.7
reflection coefficient

the fraction of radiation (e.g., fluence, energy, absorbed dose) expressed by the ratio of the amount
backscattered to that incident
3.1.8
shielding design goal
P
practical values, for a single radiotherapy source or set of sources, that are evaluated at a reference point
beyond a protective barrier
Note 1 to entry: The shielding design goals ensure that the respective annual values for effective dose limit defined by
national regulation or IAEA/ICRP for controlled and uncontrolled areas are not exceeded.
3.1.9
(patient) scatter fraction
a ()
the ratio of absorbed dose of photons at 1 m from a tissue-equivalent scattering object to the absorbed dose
measured at the isocentre with the object removed
Note 1 to entry: This quantity is a function of the scatter angle (), incident beam quality, and beam area. A scattering
phantom is typically a water-equivalent volume representing a standard human being.
3.1.10
tenth-value distance
TVD
the distance that radiation traverses in order to reduce the radiation field quantity to one-tenth of its original
value
3.1.11
tenth-value layer
TVL
the thickness of a specific material that reduces a specified radiation field quantity by a factor of 10 of its
original value, under broad beam condition
Note 1 to entry: TVL is expressed in m or cm of a defined material or in kg/m² (thickness x density).
Note 2 to entry: TVL and TVL are the first and the second tenth-value layer thicknesses, respectively.
1 2
Note 3 to entry: TVL is the equilibrium tenth-value layer, thickness for each subsequent tenth-value layer in the
e
region in which the directional and spectral distributions of the radiation field are practically independent of thickness.
Note 4 to entry: TVL is the cumulative tenth-value layer, approximate value based on large attenuation
c
measurements: for a given thickness t, TVL = -t/log(B).
c
3.1.12
time averaged dose-equivalent rate
TADR
the barrier attenuated dose-equivalent rate averaged over a specified time or period of accelerator operation
Note 1 to entry: TADR is proportional to instantaneous dose-equivalent rate (IDR), and depends on the values of
workload (W) and use factor (U).
© ISO 2014 – All rights reserved
3

---------------------- Page: 9 ----------------------
ISO/DIS 16645
3.1.13
transmission factor (or barrier transmission)
B
ratio of any radiation field quantity at a location behind the barrier on which radiation is incident to the field
quantity at the same location without the presence of the shield, for a given radiation type and quality
Note 1 to entry: B is a measure of the shielding effectiveness of the barrier.
3.1.14
workload
W
the average absorbed dose of radiation produced by a linear accelerator over a specified time (the time period
should be consistent between shielding design goals and workload) at a specific location: the absorbed dose
to water from photons (or electrons for an electron beam) at the isocentre (at 1 m from the source for
conventional devices) at a reference depth in water in electron equilibrium conditions (for example at the
depth of maximum absorbed dose) over the defined period averaged over a year if necessary. The workload
is specified in Gray (Gy)
3.2 Definitions
3.2.1
barrier (or protective barrier)
a protective wall of radiation attenuation material(s) used to reduce the equivalent dose on the side beyond
the radiation source
3.2.2
primary barrier
a wall, ceiling, floor or other structure designed to attenuate the direct radiation emitted from the target or
source that passes though the collimator opening (useful beam) to the required degree
3.2.3
secondary barrier
a wall, ceiling, floor or other structure designed to attenuate the leakage and scattered radiations to the
required degree
3.2.4
controlled area
a limited-access area in which the occupational exposure of personnel to radiation is under the supervision of
an individual in charge of radiation protection
Note 1 to entry: This implies that access, occupancy, and working conditions are controlled for radiation protection
purposes.
3.2.5
geometrical field size
geometrical projection as seen from the centre of the front surface of the radiation source on a plane
perpendicular to the axis of the beam of the distal end of the beam limiting device or collimator
Note 1 to entry: The field is thus of the same shape as the aperture of the beam limiting device
[SOURCE: IEC 60976]
3.2.6
helical intensity modulated radiotherapy
a helical intensity modulated radiotherapy system uses a linear accelerator that delivers treatment with a slit
beam that is adjust
...

NORME ISO
INTERNATIONALE 16645
Première édition
2016-10-01
Radioprotection — Accélérateurs
médicaux d’électrons — Exigences et
recommandations pour la conception
et l’évaluation du blindage
Radiological protection — Medical electron accelerators —
Requirements and recommendations for shielding design and
evaluation
Numéro de référence
ISO 16645:2016(F)
©
ISO 2016

---------------------- Page: 1 ----------------------
ISO 16645:2016(F)

DOCUMENT PROTÉGÉ PAR COPYRIGHT
© ISO 2016, Publié en Suisse
Droits de reproduction réservés. Sauf indication contraire, aucune partie de cette publication ne peut être reproduite ni utilisée
sous quelque forme que ce soit et par aucun procédé, électronique ou mécanique, y compris la photocopie, l’affichage sur
l’internet ou sur un Intranet, sans autorisation écrite préalable. Les demandes d’autorisation peuvent être adressées à l’ISO à
l’adresse ci-après ou au comité membre de l’ISO dans le pays du demandeur.
ISO copyright office
Ch. de Blandonnet 8 • CP 401
CH-1214 Vernier, Geneva, Switzerland
Tel. +41 22 749 01 11
Fax +41 22 749 09 47
copyright@iso.org
www.iso.org
ii © ISO 2016 – Tous droits réservés

---------------------- Page: 2 ----------------------
ISO 16645:2016(F)

Sommaire Page
Avant-propos .v
Introduction .vi
1 Domaine d’application . 1
2 Références normatives . 1
3 Termes et définitions . 1
3.1 Grandeurs . 2
3.2 Définitions . 4
4 Objectifs de conception de la protection radiologique et autres critères de conception .7
4.1 Objectifs de conception de la protection radiologique . 7
4.2 Hypothèses de calcul de la protection radiologique . 7
5 Rôle des fabricants, de la personne compétente en radioprotection ou de l’expert
qualifié et interactions entre les parties prenantes . 9
5.1 Généralités . 9
5.2 Fabricant de l’accélérateur linéaire . 9
5.3 Vendeur de matériaux de protection radiologique .10
5.4 Cabinet d’architectes/maître d’œuvre.11
5.5 Personne compétente en radioprotection ou expert qualifié .11
5.6 Exploitant .12
6 Champs de rayonnement autour d’un accélérateur linéaire d’électrons .12
6.1 Généralités .12
6.2 Rayonnement X .13
6.2.1 Faisceau primaire de rayons X .13
6.2.2 Rayonnement de freinage du faisceau primaire d’électrons .13
6.2.3 Rayonnement X secondaire .14
6.2.4 Rayonnement X tertiaire .14
6.3 Rayonnement neutronique .15
6.3.1 Généralités .15
6.3.2 Rayonnement neutronique direct .16
6.3.3 Rayonnement neutronique diffusé et thermique .16
6.3.4 Rayonnement neutronique de l’écran primaire .16
6.4 Rayonnement γ .17
6.4.1 Généralités .17
6.4.2 Rayonnement γ de la chicane .17
6.4.3 Rayonnement γ de la porte .17
6.4.4 Rayonnement γ de l’écran primaire .17
6.4.5 Rayonnement γ de l’air.18
7 Matériaux de protection et valeurs de transmission .18
8 Approche générale pour le calcul de la protection radiologique .20
9 Calcul de la protection radiologique pour des appareils conventionnels .22
9.1 Généralités .22
9.2 Écrans primaires .22
9.2.1 Composantes du rayonnement .22
9.2.2 Écran constitué d’un matériau unique .23
9.2.3 Écran à plusieurs couches .23
9.3 Écrans secondaires .24
9.3.1 Composantes du rayonnement .24
9.3.2 Écran constitué d’un matériau unique .25
9.3.3 Écrans à plusieurs couches .26
10 Portes et chicanes .27
10.1 Généralités .27
© ISO 2016 – Tous droits réservés iii

---------------------- Page: 3 ----------------------
ISO 16645:2016(F)

10.2 Composantes du rayonnement .27
10.3 Chicane standard .28
10.3.1 Calculs de la diffusion des rayons X dans la chicane .28
10.3.2 Rayonnement de fuite direct de rayons X .34
10.3.3 Calculs du rayonnement neutronique et du rayonnement gamma généré
par capture dans la chicane .35
10.4 Chicane à deux coudes.37
10.5 Absence de chicane - Portes directes blindées .38
10.5.1 Généralités .38
10.5.2 Protection du côté le plus éloigné d’une porte d’entrée directe blindée .39
10.5.3 Protection du côté le plus proche d’une porte d’entrée directe blindée .41
10.6 Absence de porte à l’entrée de la chicane .44
10.7 Calculs de porte .45
10.7.1 Généralités .45
10.7.2 Calculs de porte de chicane .45
10.7.3 Calculs de porte directe blindée .46
11 Calculs de la protection pour des appareils spéciaux .46
11.1 Généralités .46
11.2 Accélérateur à bras robotisé .46
11.3 Radiothérapie hélicoïdale avec modulation d’intensité .47
11.4 Appareil dédié à la radiothérapie peropératoire avec des électrons .48
12 Conduits .49
12.1 Impact des conduits sur la radioprotection .49
12.2 Emplacement et géométrie recommandés .49
12.3 Protection supplémentaire .49
12.3.1 Généralités .49
12.3.2 Rayonnement neutronique et rayonnement gamma généré par capture
traversant l’intérieur du conduit blindé .50
12.3.3 Rayonnement X diffusé traversant l’intérieur du conduit blindé .51
12.3.4 Rayonnement diffusé traversant les parois du blindage du conduit .51
12.3.5 Équivalent de dose au niveau de l’ouverture extérieure du conduit de CVC .51
13 Considérations particulières .52
13.1 Effet de ciel .52
13.1.1 Généralités .52
13.1.2 Rayonnement X dû à l’effet de ciel .52
13.1.3 Rayonnement neutronique dû à l’effet de ciel .53
13.2 Rayonnements du sol .54
13.3 Joints et jonctions .55
14 Évaluation de la protection (vérification expérimentale) .55
14.1 Généralités .55
14.2 Équipement et méthode de mesure .55
14.3 Évaluation .56
15 Indication, signaux d’avertissement et verrouillages .58
Annexe A (informative) Couches de déci-transmission pour les matériaux de protection les
plus courants .59
Annexe B (informative) Données servant au calcul de la protection radiologique .72
Annexe C (informative) Exemple de calcul pour un appareil conventionnel et une
chicane standard .74
Bibliographie .82
iv © ISO 2016 – Tous droits réservés

---------------------- Page: 4 ----------------------
ISO 16645:2016(F)

Avant-propos
L’ISO (Organisation internationale de normalisation) est une fédération mondiale d’organismes
nationaux de normalisation (comités membres de l’ISO). L’élaboration des Normes internationales est
en général confiée aux comités techniques de l’ISO. Chaque comité membre intéressé par une étude
a le droit de faire partie du comité technique créé à cet effet. Les organisations internationales,
gouvernementales et non gouvernementales, en liaison avec l’ISO participent également aux travaux.
L’ISO collabore étroitement avec la Commission électrotechnique internationale (IEC) en ce qui
concerne la normalisation électrotechnique.
Les procédures utilisées pour élaborer le présent document et celles destinées à sa mise à jour sont
décrites dans les Directives ISO/IEC, Partie 1. Il convient, en particulier de prendre note des différents
critères d’approbation requis pour les différents types de documents ISO. Le présent document a été
rédigé conformément aux règles de rédaction données dans les Directives ISO/IEC, Partie 2 (voir www.
iso.org/directives).
L’attention est appelée sur le fait que certains des éléments du présent document peuvent faire l’objet de
droits de propriété intellectuelle ou de droits analogues. L’ISO ne saurait être tenue pour responsable
de ne pas avoir identifié de tels droits de propriété et averti de leur existence. Les détails concernant
les références aux droits de propriété intellectuelle ou autres droits analogues identifiés lors de
l’élaboration du document sont indiqués dans l’Introduction et/ou dans la liste des déclarations de
brevets reçues par l’ISO (voir www.iso.org/brevets).
Les appellations commerciales éventuellement mentionnées dans le présent document sont données
pour information, par souci de commodité, à l’intention des utilisateurs et ne sauraient constituer un
engagement.
Pour une explication de la nature volontaire des normes, la signification des termes et expressions
spécifiques de l’ISO liés à l’évaluation de la conformité, ou pour toute information au sujet de l’adhésion
de l’ISO aux principes de l’OMC concernant les obstacles techniques au commerce (OTC), voir le lien
suivant: www.iso.org/iso/fr/foreword.html.
Le comité chargé de l’élaboration du présent document est l’ISO/TC 85, Énergie nucléaire, technologies
nucléaires, et radioprotection, sous-comité SC 2, Radioprotection.
Cette version corrigée de l’ISO 16645:2016 intègre la correction des Tableaux A.9 et C.6.
© ISO 2016 – Tous droits réservés v

---------------------- Page: 5 ----------------------
ISO 16645:2016(F)

Introduction
La radiothérapie emploie un faisceau de rayonnement externe pour tuer les cellules cancéreuses et
réduire les tumeurs. L’utilisation d’accélérateurs linéaires d’électrons pour délivrer un faisceau de
rayonnement externe s’est répandue au cours des dernières décennies et cette technique d’irradiation
est à présent couramment utilisée dans le monde entier. Ces accélérateurs produisent des faisceaux
d’électrons et de photons de haute énergie avec des débits de dose de plus en plus élevés. Même si
l’utilisation de la radiothérapie est bien établie, les techniques d’irradiation continuent d’évoluer et
deviennent de plus en plus complexes. La modulation de l’intensité du faisceau, les modes d’irradiation
à débits de dose élevés à présent disponibles, la radiothérapie hélicoïdale avec modulation d’intensité,
les accélérateurs à bras robotisé, et les appareils dédiés à la radiothérapie peropératoire en sont des
exemples. La conception du blindage des salles de traitement a évolué pour suivre ces avancées. La
charge de travail plus conséquente associée à la plupart de ces techniques peut avoir une influence sur
les matériaux de blindage utilisés. La technique d’irradiation peut également influencer la géométrie à
considérer lors des calculs de protection.
L’IEC 60601-2-1 traite de la conception et de la construction des accélérateurs dans le but d’assurer
[1] [2][3]
la sécurité de leur fonctionnement. En outre, plusieurs rapports nationaux ou internationaux
(rapport Safety Report Series n° 47 de l’AIEA, 2006) donnent des recommandations concernant
l’installation et l’exploitation de ces accélérateurs, les dispositifs de sécurité, la conception et le calcul
des protections, le contrôle et la surveillance radiologiques. Des normes nationales ont été établies dans
[4][5]
certains pays. Par ailleurs, des réglementations nationales imposent des règles particulières de
protection contre les rayonnements, notamment en ce qui concerne la définition des zones contrôlées
et le calcul de la protection radiologique.
Compte tenu du développement de nouvelles techniques d’irradiation et des nouvelles conceptions de
salles de traitement d’une part, et de la diversité des guides ou documents normatifs d’autre part, il
semblait judicieux d’établir une Norme internationale servant de cadre général. La présente norme est
destinée à être complémentaire aux autres normes internationales (IEC et AIEA).
Les sujets suivants sont traités dans la norme:
— types d’accélérateurs: accélérateurs conventionnels avec et sans filtre égalisateur (modes de
fonctionnement FF et FFF), appareils de radiothérapie hélicoïdale avec modulation d’intensité et
accélérateurs à bras robotisé, machines dédiées à la radiothérapie peropératoire;
— champs de rayonnement: électrons, photons X et neutrons (directs, diffusés, de fuite), rayons gamma
générés par capture neutronique;
— géométrie de la salle de traitement: chicane avec et sans porte, absence de chicane avec porte
directe;
— matériaux de protection: béton (ordinaire ou lourd), métaux, écrans stratifiés (béton et métal),
matériaux hydrogénés, terre et autres;
— conception de l’installation de radiothérapie;
— méthodes de calcul de la protection radiologique, incluant les neutrons, différents types
d’installations et de géométries de protection;
— évaluation de l’impact de la chicane et calcul de la protection de la porte d’entrée;
— évaluation de l’impact des conduits (ventilation et climatisation, haute tension et fluides) et des
protections supplémentaires;
— hypothèse et objectifs de conception de la protection radiologique;
— contrôle radiologique de l’installation complète pour garantir sa conformité aux exigences nationales
ainsi que l’adéquation de la protection radiologique et de la conception à l’objectif après installation
de l’accélérateur.
vi © ISO 2016 – Tous droits réservés

---------------------- Page: 6 ----------------------
NORME INTERNATIONALE ISO 16645:2016(F)
Radioprotection — Accélérateurs médicaux d’électrons
— Exigences et recommandations pour la conception et
l’évaluation du blindage
1 Domaine d’application
La présente Norme internationale s’applique aux accélérateurs linéaires d’électrons médicaux, c’est-à-
dire aux accélérateurs linéaires avec des énergies nominales de faisceau dans la gamme de 4 MV à 30 MV,
y compris les installations particulières telles que le bras robotisé, les appareils de radiothérapie
hélicoïdale avec modulation d’intensité et les appareils dédiés à la radiothérapie peropératoire (IORT)
avec électrons.
Les cyclotrons et les synchrotrons utilisés pour l’hadronthérapie ne sont pas considérés.
Les exigences et recommandations en matière de radioprotection données dans la présente
Norme internationale couvrent les aspects liés aux réglementations, aux objectifs de conception
de la protection radiologique et autres critères de conception, au rôle des fabricants, de la personne
compétente en radioprotection ou de l’expert qualifié et aux interactions entre les parties prenantes,
aux rayonnements autour d’un accélérateur linéaire, à la protection pour les appareils conventionnels
et spéciaux (y compris les matériaux de protection et les valeurs de transmission, les calculs pour
différentes configurations de salle de traitement, l’impact des conduits sur la radioprotection) et à la
surveillance radiologique (mesurages).
NOTE 1 L’Annexe A procure des valeurs de transmission pour les matériaux de protection les plus courants.
NOTE 2 L’Annexe B fournit des données servant au calcul de la protection radiologique.
NOTE 3 L’Annexe C donne un exemple de calcul pour un appareil conventionnel et une chicane standard.
2 Références normatives
Les documents ci-après, dans leur intégralité ou non, sont des références normatives indispensables à
l’application du présent document. Pour les références datées, seule l’édition citée s’applique. Pour les
références non datées, la dernière édition du document de référence s’applique (y compris les éventuels
amendements).
IEC 60976, Appareils électromédicaux — Accélérateurs médicaux d’électrons — Caractéristiques
fonctionnelles de performance
IAEA Safety Reports Series Report No. 47, Radiation protection in the Design of Radiotherapy
Facilities (2006)
3 Termes et définitions
Pour les besoins du présent document, les termes et définitions donnés dans l’IEC 60976 ainsi que les
suivants s’appliquent.
© ISO 2016 – Tous droits réservés 1

---------------------- Page: 7 ----------------------
ISO 16645:2016(F)

3.1 Grandeurs
3.1.1
dose absorbée
D
quotient de dε par dm, où dε est l’énergie moyenne communiquée à un élément de matière de masse
dm, à savoir

D=
dm
Note 1 à l’article: Dans le présent document, la dose absorbée est définie pour un rayonnement produit par un
accélérateur linéaire à un emplacement particulier: la dose absorbée dans l’eau au niveau de l’isocentre (à 1 m
de la source pour des appareils conventionnels) à une profondeur de référence dans l’eau dans des conditions
d’équilibre électronique (par exemple à la profondeur du maximum de dose absorbée).
−1
Note 2 à l’article: L’unité de dose absorbée est le joule par kilogramme (J·kg ) et son nom spécial est le gray (Gy).
[6]
[SOURCE: ISO 12749-2:2013, 4.1.6.7]
3.1.2
débit de dose absorbée
débit en sortie
DR
o
dose absorbée par unité de temps
Note 1 à l’article: Dans la présente Norme internationale, en l’absence d’indication particulière, le débit de dose
absorbée est défini pour un rayonnement produit par un accélérateur linéaire à un emplacement particulier: le
débit de dose absorbée dans l’eau au niveau de l’isocentre (à 1 m de la source pour des appareils conventionnels) à
une profondeur de référence dans l’eau dans des conditions d’équilibre électronique (par exemple à la profondeur
du maximum de dose absorbée).
−1
Note 2 à l’article: L’unité de débit de dose absorbée est le gray par seconde (Gy·s ). L’unité usuelle pour les
−1
accélérateurs médicaux est le gray par heure (Gy·h ).
3.1.3
équivalent de dose
H
produit de D par Q en un point dans un tissu, où D est la dose absorbée (3.1.1) et Q est le facteur de
qualité pour le rayonnement spécifique au niveau de ce point, à savoir: H = D × Q
−1
Note 1 à l’article: L’unité d’équivalent de dose est le joule par kilogramme (J·kg ) et son nom spécial est le
sievert (Sv).
[6]
[SOURCE: ISO 12749-2:2013, 4.1.6.8]
3.1.4
quotient RCMI
C
I
rapport du nombre moyen d’unités moniteur par unité de dose absorbée prescrite requis pour
la RCMI (UM ) au nombre d’unités moniteur par unité de dose absorbée pour un traitement
RCMI
conventionnel (UM )
conv
UM
RCMI
C =
I
UM
CONV
2 © ISO 2016 – Tous droits réservés

---------------------- Page: 8 ----------------------
ISO 16645:2016(F)

3.1.5
débit instantané d’équivalent de dose
IDR
–1
débit d’équivalent de dose «ambiant/individuel» (Sv·h ) mesuré lorsque l’accélérateur linéaire
–1
fonctionne au débit de dose absorbée DR (Gy·h )
o
Note 1 à l’article: Il s’agit de la lecture directe du débitmètre qui donne une valeur stable en équivalent de dose
par heure. L’IDR est spécifié en un point de référence (30 cm) au-delà de l’écran traversé.
3.1.6
dose efficace
E
somme des doses équivalentes pour tous les tissus, chacune étant multipliée par le facteur de
pondération tissulaire
...

Questions, Comments and Discussion

Ask us and Technical Secretary will try to provide an answer. You can facilitate discussion about the standard in here.