This document establishes basic requirements for interface control documents (ICD) writing and interface control procedures for the following items included in the launch system: payload, launch vehicle, ground support equipment (according to ISO 14625) and launch site (buildings with utility systems), specifically: a) ICD between the ground support equipment and the payload; b) ICD between the ground support equipment and the launch vehicle; c) ICD between items of the ground support equipment; d) ICD between the ground support equipment and the launch site. This document is applicable to organizations developing ground support equipment and to operators performing space activity.

  • Standard
    16 pages
    English language
    sale 15% off

This standard defines the requirements for selection, control, procurement and
usage of EEE commercial components for space projects.
This standard is applicable to commercial parts from the following families:
• Ceramic capacitors chips
• Solid electrolyte tantalum capacitors chips
• Discrete parts (transistors, diodes, optocouplers)
• Fuses
• Magnetic parts
• Microcircuits
• Resistors chips
• Thermistors
In addition for families of EEE components not addressed by the present ECSS
standard, it can be used as guideline on case by case basis.
The requirements of this document are applicable to all parties involved at all
levels in the integration of EEE commercial components into space segment
hardware and launchers.
This standard may be tailored for the specific characteristics and constrains of a
space project in conformance with ECSS-S-ST-00

  • Standard
    106 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    123 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard defines the requirements for selection, control, procurement and usage of EEE components for space projects.
This standard differentiates between three classes of components through three different sets of standardization requirements (clauses) to be met.
The three classes provide for three levels of trade-off between assurance and risk. The highest assurance and lowest risk is provided by class 1 and the lowest assurance and highest risk by class 3. Procurement costs are typically highest for class 1 and lowest for class 3. Mitigation and other engineering measures may decrease the total cost of ownership differences between the three classes. The project objectives, definition and constraints determine which class or classes of components are appropriate to be utilised within the system and subsystems.
a.   Class 1 components are described in Clause 4.
b.   Class 2 components are described in Clause 5
c.   Class 3 components are described in Clause 6.
The requirements of this document apply to all parties involved at all levels in the integration of EEE components into space segment hardware and launchers.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    126 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard specifies the processing and quality assurance requirements for
brazing processes for space flight applications. Brazing is understood as the
joining and sealing of materials by means of a solidification of a liquid filler
metal.
The term brazing in this standard is used as equivalent to soldering, in cases that
the filler materials have liquidus temperatures below 450 °C.
Brazing and soldering are allied processes to welding and this standard is
supplementing the standard for welding ECSS-Q-ST-70-39.
This standard does not cover requirements for:
• Joining processes by adhesive bonding (ECSS-Q-ST-70-16),
• Soldering for electronic assembly purposes (ECSS-Q-ST-70-61),
• Soldering used in hybrid manufacturing (ESCC 2566000).
The standard covers but is not limited to the following brazing processes:
• Torch brazing,
• Furnace brazing,
• Dip Brazing and Salt-bath brazing,
• Induction Brazing.
This Standard does not detail the brazing definition phase and brazing pre-
verification phase, including the derivation of design allowables.
This standard may be tailored for the specific characteristic and constraints of a
space project in conformance with ECSS-S-ST-00.

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document provides the test requirements of three typical separation test methods, which are the combined separation test, the horizontal separation test, the individual falling separation test, for the separation between the launch vehicle (LV) and the spacecraft (or between stages of a prototype LV model). It also provides the requirements for the separation test unit, test data, test timing and sequence, pre-test simulation, test environment, exception handling, test results assessment, test documentation, test facilities, test installation, preliminary adjustment of the test setup, measurement and data acquisition. This document is applicable to test providers and interested parties to implement the separation test between the launch vehicle and the spacecraft.

  • Standard
    32 pages
    English language
    sale 15% off

This document specifies processes, requirements and recommendations for the breakdown of project management structures, collectively called project breakdown structures, in terms of the various specification (i.e. requirements), functional, product, work, cost, business and organizational breakdown structures that are established and implemented to contribute to the success of a space programme, which is often composed of one or more projects. It specifies the various types of project breakdown structures and gives processes, requirements and guidance concerning the composition of these breakdown structures. This document is applicable to project breakdown structures for a project, including at the top level of a programme, i.e. level 0, as indicated in ISO 14300-1. It is intended to be used either by an independent developer as a partial basis for programme processes or as a basis for an agreement between a supplier and a customer. This document also provides descriptions of the kinds of project breakdown structures that are commonly useful in contributing to the success of a space project. Other project breakdown structures not described in this document also often contribute to the success of a space project.

  • Standard
    13 pages
    English language
    sale 15% off

2021-04-21: This EN is based on ECSS-Q-ST-60-13C Rev.1

  • Standard
    106 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    123 pages
    English language
    sale 10% off
    e-Library read for
    1 day

2021-04-21: This EN is based on ECSS-Q-ST-70-40C

  • Standard
    39 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    38 pages
    English language
    sale 10% off
    e-Library read for
    1 day

The Scope of the Standard remains unchanged.
This standard defines the requirements for selection, control, procurement and usage of EEE components for space projects.
This standard differentiates between three classes of components through three different sets of standardization requirements (clauses) to be met.
The three classes provide for three levels of trade-off between assurance and risk. The highest assurance and lowest risk is provided by class 1 and the lowest assurance and highest risk by class 3. Procurement costs are typically highest for class 1 and lowest for class 3. Mitigation and other engineering measures may decrease the total cost of ownership differences between the three classes. The project objectives, definition and constraints determine which class or classes of components are appropriate to be utilised within the system and subsystems.
a.   Class 1 components are described in Clause 4.
b.   Class 2 components are described in Clause 5
c.   Class 3 components are described in Clause 6.
The requirements of this document apply to all parties involved at all levels in the integration of EEE components into space segment hardware and launchers.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    126 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies class codes to classify global navigation satellite system (GNSS) receivers. The class codes represent how signals transmitted from radionavigation satellites are processed. This document applies to all types of GNSS receiver devices. The class codes in this document are not applicable to the following items: — condition of radionavigation satellites; — radio propagation environment including multipath, masking and obstacle; — additional antenna of a receiver device; — additional application software in a receiver device.

  • Standard
    17 pages
    English language
    sale 15% off
  • Draft
    17 pages
    English language
    sale 15% off

This document specifies test equipment and techniques used to identify interactions resulting from exposure of a material to an aerospace fluid. It is applicable for determining interactive reactions between propellants and materials used in the design, construction, and operation of propellant storage, transfer, and flight systems.

  • Standard
    10 pages
    English language
    sale 15% off
  • Draft
    10 pages
    English language
    sale 15% off
  • Draft
    10 pages
    English language
    sale 15% off

This document specifies the requirements for a dependability (reliability, availability and maintainability) assurance programme for space projects. It defines the dependability requirements for space products as well as for system functions implemented in software, and the interaction between hardware and software. This document is applicable to all programme phases.

  • Standard
    18 pages
    English language
    sale 15% off
  • Draft
    18 pages
    English language
    sale 15% off
  • Draft
    18 pages
    English language
    sale 15% off

This document provides spacecraft (SC) organizations with the general format for presenting the interface requirement document (IRD) for launch vehicle services. The IRD provides a list of the major technical requirements spacecraft agencies provide to launch vehicle (LV) agencies when submitting an application for launch services. The IRD addresses the definition of the SC mission, the mechanical and electrical interfaces, the overall environment requirements (mechanical, thermal, cleanliness, radio-electrical), the SC development and test programme and, finally, launch range facilities and support requirements. This document is applicable to all existing commercial LV and related launch facilities so as to permit SC contractors to prepare a single interface requirement document for a given SC mission, independently of the LV contractor to be selected. The IRD, as defined in this document, includes the basic SC input data needed by LV agencies to prepare the interface control document defined in ISO 15863.

  • Standard
    23 pages
    English language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 15% off
  • Draft
    24 pages
    English language
    sale 15% off

This document defines the primary space debris mitigation requirements applicable to all elements of unmanned systems launched into, or passing through, near-Earth space, including launch vehicle orbital stages, operating spacecraft and any objects released as part of normal operations.

  • Standard
    12 pages
    English language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off
  • Draft
    12 pages
    English language
    sale 15% off

This document specifies process requirements for project reviews as a set of required functions. It establishes requirements and recommendations on the function inputs, outputs, mechanisms and controlling conditions. This document specifies the responsibilities of a review board and gives guidance concerning review board composition. This document also provides descriptions of the kinds of reviews that are commonly useful in assuring the success of a space project. This document is applicable to status reviews for a project at any level within a larger project, as well as for major milestone reviews at the top level of a major project. It is intended to be used either by an independent developer as a basis for enterprise processes, or as a basis for an agreement between a supplier and a customer. It is intended for use in implementing the review requirements of ISO 14300-1, and ISO 14300-2, ISO 15865 and such other space systems and operations standards that require formal reviews.

  • Standard
    19 pages
    English language
    sale 15% off
  • Draft
    19 pages
    English language
    sale 15% off
  • Draft
    19 pages
    English language
    sale 15% off

This document contains requirements and guidelines for the utilization of off-the-shelf (OTS) items, their selection, acquisition, integration, qualification and implementation related to a space product or system. This document doesn't cover piece parts and materials, such as electrical, electronic and electromechanical (EEE) parts, thermocouples, rivets, fasteners, connectors, fittings, adhesives, insulation, wiring and plumbing.

  • Standard
    15 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off
  • Draft
    15 pages
    English language
    sale 15% off

This document provides methods and specifies general requirements for spacecraft level thermal balance tests (TBT) and thermal vacuum tests (TVT). It also provides basic requirements for test facilities, test procedures, test malfunction interruption emergency handling and test documentation. The methods and requirements can be used as a reference for subsystem-level and unit-level test article.

  • Standard
    30 pages
    English language
    sale 15% off
  • Standard
    30 pages
    English language
    sale 15% off

This document describes the main magnetospheric large-scale current systems and the magnetic field in the Earth's magnetosphere and provides the main requirements to the model of the magnetospheric magnetic field. Ionospheric currents are not considered in this document. The document also provides a working example of the model and establishes the parameters of magnetospheric large-scale current systems which are changing in accordance with conditions in the space environment. The document can be used to develop the new models of magnetospheric magnetic field. Such models are useful in investigating physical processes in the Earth's magnetosphere as well as in calculations, developing, testing and estimating the results of exploitation of spacecrafts and other equipment operating in the space environment.

  • Standard
    17 pages
    English language
    sale 15% off

This Standard specifies the requirements for the development of the end­to­end data communications system for spacecraft.
Specifically, this standard specifies:
- The terminology to be used for space communication systems engineering.
- The activities to be performed as part of the space communication system engineering process, in accordance with the ECSS-E-ST-10 standard.
- Specific requirements on space communication systems in respect of functionality and performance.
The communications links covered by this Standard are the space­to­ground and space­to­space links used during spacecraft operations, and the communications links to the spacecraft used during the assembly, integration and test, and operational phases.
Spacecraft end­to­end communication systems comprise components in three distinct domains, namely the ground network, the space link, and the space network. This Standard covers the components of the space link and space network in detail. However, this Standard only covers those aspects of the ground network that are necessary for the provision of the end­to­end communication services.
NOTE Other aspects of the ground network are covered in ECSS-E ST 70.
This Standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S ST 00.

  • Standard
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM
Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In the standard CCSDS 132.0-B-2, TM Space Data Link Protocol, CCSDS specifies a data link layer protocol for the
efficient transfer of space application data of various types and characteristics over space links.
This Adoption Notice adopts and applies CCSDS 132.0-B-2 w ith a minimum set of modifications, identified in the present
document, to allow for reference and for a consistent integration in the ECSS system of standards.
The TM Transfer Frame specified in CCSDS 132.0-B-2 is similar to the TM Transfer Frame specified in the EN 16603-50-
03:2014 (ECSS-E-ST-50-03), that is superseded by the follow ing tw o Adoption Notices: EN 16603-50-22 (ECSS-E-AS-
50-22) and EN 16603-50-23 (ECSS-E-AS-50-23).
Differences betw een these tw o standards that are not covered by the normative modifications in clause 4 are described in
the informative Annex A.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 732.0-B-3, AOS Space Data Link Protocol, Issue 3, September 2015 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 16603-35-06 (equivalent of ECSS-E-ST-35-06) belongs to the Propulsion field of the mechanical discipline, and concerns itself with the cleanliness of propulsion components, sub-systems and systems
The standard
- defines design requirements which allow for cleaning of propulsion components sub-systems and systems and which avoid generation or unwanted collection of contamination,
- identifies cleanliness requirements (e.g. which particle / impurity / wetness level can be tolerated),
- defines requirements on cleaning to comply with the cleanliness level requirements, and the requirements on verification,
- identifies the cleanliness approach, cleaning requirements, (e.g. what needs to be done to ensure the tolerable level is not exceeded, compatibility requirements),
- identifies, specifies and defines the requirements regarding conditions under which cleaning or cleanliness verification takes place (e.g. compatibility, check after environmental test).
The standard is applicable to the most commonly used propulsion systems and their related storable propellant combinations: Hydrazine (N2H4), Mono Methyl Hydrazine (CH3N2H3), MON (Mixed Oxides of Nitrogen), Nitrogen (N2), Helium (He), Propane (C3H8), Butane (C4H10) and Xenon (Xe).
This standard is the basis for the European spacecraft and spacecraft propulsion industry to define, achieve and verify the required cleanliness levels in spacecraft propulsion systems.
This standard is particularly applicable to spacecraft propulsion as used for satellites and (manned) spacecraft and any of such projects including its ground support equipment.
External cleanliness requirements, e.g. outside of tanks, piping and aspects such as fungus and outgassing are covered by ECSS-Q-ST-70-01.
This standard may be tailored for the specific characteristic and constraints of a space project in conformance with ECSS-S-ST-00.

  • Standard
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    71 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standards CCSDS 232.1-B-2, Communications Operation Procedure-1, Issue 2, September 2010 for application in ECSS.
NOTE The recently published technical corrigendum has modified CCSDS 232.1-B-2. However, the changes are not affecting the Adoption Notice.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 231.0-B-3, TC Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document addresses experimental add-on components to a space system under development and specifies the procedures for preparing and carrying out space experiments (SEs), and analysis and processing of the findings. It is applicable to both manned and unmanned space systems. It can be tailored to the specific needs of different kinds of SEs.

  • Standard
    12 pages
    English language
    sale 15% off

This document specifies the general characteristics, performance, design, test, checkout, maintenance, safety, reliability, maintainability and quality requirements for ground support equipment (GSE) and systems intended for use at launch, landing or retrieval-site installations, or other locations that are the responsibility of the launch, landing and retrieval site. This document does not specify how to design, checkout and maintain GSE, but establishes the minimum requirements to provide simple, robust, safe, reliable, maintainable and cost-effective GSE. This document is applicable to the design, checkout and maintenance of non-flight hardware and software used to support the operations of transporting, receiving, handling, assembly, inspection, test, checkout, service, launch and recovery of space vehicles and payloads at the launch, landing or retrieval sites. As such, the requirements of this document are optional for hardware used only at the manufacturing, development or test sites prior to arrival at the launch, landing or retrieval sites. However, if such GSE is dual use equipment to be also at a launch, landing or retrieval site, for whatever reason, all the safety-related requirements of this document apply to the GSE.

  • Standard
    26 pages
    English language
    sale 15% off

This document establishes the main requirements for: — a choice of coating materials and coatings for space applications; — processes and procedures for the verification of coating materials; — processes of preparation and quality control of the painted surface; — the quality control of the applied coatings. This document also describes the causes of possible defects in coatings. This document is applicable to coating materials and coatings based on them; it is intended for use by manufacturers of space systems products for various surfaces of spacecraft’s and its constitutive parts (on-board systems, facilities, tools, electronic component base products) with long active lifetimes.

  • Standard
    17 pages
    English language
    sale 15% off

This document describes a process for managing, controlling and monitoring the mass properties of space systems. The relationship between this management plan and the performance parameters for mass properties to be met throughout the mission is described. Ground handling, dynamics analysis and test set-ups that rely on accurate mass properties inputs are identified. This document covers all programme phases from pre-proposal through to end of life.

  • Standard
    12 pages
    English language
    sale 15% off

This document specifies general requirements for adhesive selection with the adhesive bonding process and quality assurance used in space systems. This document can be applied to different types of adhesive materials in space systems, such as launch vehicles, satellites, spacecraft and space station for the following applications: bonding, components embedding (only for space application), sealing, fixing and repairing.

  • Standard
    19 pages
    English language
    sale 15% off

This standard defines:
- the basic requirements for the verification and approval of automatic machine w ave soldering for use in spacecraft hardware. The process requirements for w ave soldering of doublesided and multilayer boards are also defined.
- the technical requirements and quality assurance provisions for the manufacture and verification of manuallysoldered, high-reliability electrical connections.
- the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits based on surface mounted device (SMD) and mixed technology.
- the acceptance and rejection criteria for high reliability manufacture of manually-soldered electrical connections intended to w ithstand normal terrestrial conditions and the vibrational g-loads and environment imposed by space flight.
- the proper tools, correct materials, design and w orkmanshipt. Workmanship standards are included to permit discrimination betw een proper and improper work.
SCOPE
This Standard defines the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
The Standard defines w orkmanship requirements, the acceptance and rejection criteria for high-reliability assemblies intended to withstand normal terrestrial conditions and the environment imposed by space flight.
The mounting and supporting of components, terminals and conductors specified in this standard applies only to assemblies designed to continuously operate over the mission w ithin the temperature limits of -55 °C to +85 °C at solder joint level.
Requirements related to printed circuit boards are contained in ECSS-Q-ST-70-60 (equivalent to EN 16602-70-60) and ECSS-Q-ST-70-12 (equivalent to EN 16602-70-12).
This Standard does not cover the qualification and acceptance of the EQM and FM equipment w ith high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
This Standard does not cover verification of thermal properties for component assembly.
This Standard does not cover pressfit connectors.
The qualification and acceptance tests of equipment manufactured in accordance w ith this Standard are covered by ECSS-EST-10-03 (equivalent to EN 16603-10-03).

  • Standard
    253 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    247 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This standard defines:
- the basic requirements for the verification and approval of automatic machine w ave soldering for use in spacecraft hardware. The process requirements for w ave soldering of doublesided and multilayer boards are also defined.
- the technical requirements and quality assurance provisions for the manufacture and verification of manuallysoldered, high-reliability electrical connections.
- the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits based on surface mounted device (SMD) and mixed technology.
- the acceptance and rejection criteria for high reliability manufacture of manually-soldered electrical connections intended to w ithstand normal terrestrial conditions and the vibrational g-loads and environment imposed by space flight.
- the proper tools, correct materials, design and w orkmanshipt. Workmanship standards are included to permit discrimination betw een proper and improper work.
SCOPE
This Standard defines the technical requirements and quality assurance provisions for the manufacture and verification of high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
The Standard defines w orkmanship requirements, the acceptance and rejection criteria for high-reliability assemblies intended to withstand normal terrestrial conditions and the environment imposed by space flight.
The mounting and supporting of components, terminals and conductors specified in this standard applies only to assemblies designed to continuously operate over the mission w ithin the temperature limits of -55 °C to +85 °C at solder joint level.
Requirements related to printed circuit boards are contained in ECSS-Q-ST-70-60 (equivalent to EN 16602-70-60) and ECSS-Q-ST-70-12 (equivalent to EN 16602-70-12).
This Standard does not cover the qualification and acceptance of the EQM and FM equipment w ith high-reliability electronic circuits of surface mount, through hole and solderless assemblies.
This Standard does not cover verification of thermal properties for component assembly.
This Standard does not cover pressfit connectors.
The qualification and acceptance tests of equipment manufactured in accordance w ith this Standard are covered by ECSS-EST-10-03 (equivalent to EN 16603-10-03).

  • Standard
    253 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    247 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes general requirements for contamination and cleanliness control that are applicable, at all tiers of supply, to the development of space systems, including ground processing facilities, ground support equipment, launch vehicles, spacecraft, payloads, and ground processing and on-orbit operations. It also provides guidelines for the establishment of a contamination and cleanliness control programme.

  • Standard
    32 pages
    English language
    sale 15% off

This standard addresses the requirements for performing verification by testing of space segment elements and space segment equipment on ground prior to launch. The document is applicable for tests performed on qualification models, flight models (tested at acceptance level) and protoflight models.
The standard provides:
• Requirements for test programme and test management,
• Requirements for retesting,
• Requirements for redundancy testing,
• Requirements for environmental tests,
• General requirements for functional and performance tests,
NOTE Specific requirements for functional and performance tests are not part of this standard since they are defined in the specific project documentation.
• Requirements for qualification, acceptance, and protoflight testing including qualification, acceptance, and protofight models’ test margins and duration,
• Requirements for test factors, test condition, test tolerances, and test accuracies,
• General requirements for development tests pertinent to the start of the qualification test programme,
NOTE Development tests are specific and are addressed in various engineering discipline standards.
• Content of the necessary documentation for testing activities (e.g. DRD).
Due to the specific aspects of the follow ing types of test, this Standard does not address:
• Space system testing (i.e. testing above space segment element), in particular the system validation test,
• In-orbit testing,
• Testing of space segment subsystems,
NOTE Tests of space segment subsystems are often limited to functional tests that, in some case, are run on dedicated models. If relevant, qualification tests for space segment subsystems are assumed to be covered in the relevant discipline standards.
Testing of hardware below space segment equipment levels (including assembly, parts, and components),
• Testing of stand-alone software,
NOTE For verification of flight or ground softw are, EN 16603-40 (ECSS-E-ST-40) and EN 16602-80 (ECSS-Q-ST-80) apply.
• Qualification testing of tw o-phase heat transport equipment,
NOTE For qualification testing of tw o-phase heat transport equipment, EN 16603-31-02 (ECSS-E-ST-31-02) applies.
• Tests of launcher segment, subsystem and equipment, and launch facilities,
• Tests of facilities and ground support equipment,
• Tests of ground segment.
This activity will be the update of EN16603-10-03:2014
NOTE: Parallel development of update of EN Standard and the new European TR17603-10-03.

  • Standard
    132 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    127 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EMC policy and general system requirements are specified in ECSS-E-ST-20 (equivalent to EN 16603-20).
This ECSS-E-ST-20-07 (equivalent to EN 16603-20-07) Standard addresses detailed system requirements (Clause 4), general test conditions, verification requirements at system level, and test methods at subsystem and equipment level (Clause 5) as w ell as informative limits (Annex A).
Associated to this standard is ECSS-E-ST-20-06 (equivalent to EN 16603-20-06) "Spacecraft charging", w hich addresses charging control and risks arising from environmental and vehicle-induced spacecraft charging w hen ECSS-E-ST-20-07 addresses electromagnetic effects of electrostatic discharges.
Annexes A to C of ECSS-E-ST-20 document EMC activities related to ECSS-E-ST-20-07: the EMC Control Plan (Annex A) defines the approach, methods, procedures, resources, and organization, the Electromagnetic Effects Verification Plan (Annex B) defines and specifies the verification processes, analyses and tests, and the Electromagnetic Effects Verification Report (Annex C) document verification results. The EMEVP and the EMEVR are the vehicles for tailoring this standard.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document establishes general rules for qualification assessment of space systems and products used in space systems against their functional and technical specifications. It establishes general requirements for determining system or product readiness for any stage of the life cycle. This includes, for example, readiness for development, manufacture, test, operation, modification, or disposal. This document is applicable to systems and products used in flight or ground support and to products at all levels in a product tree. It applies to systems and products consisting of hardware, software, facilities, materials, methods, processes, procedures or any combination of these. It establishes common: a) general requirements for qualification assessment of item readiness; b) approaches to qualification. This document is intended for use as the basis for a design justification plan. It is intended to be used either in establishing an agreement for such a plan between a customer and a supplier or as the basis for a supplier’s internal qualification practices.

  • Standard
    21 pages
    English language
    sale 15% off

This document specifies requirements for the implementation of spacecraft level micro-vibration tests on space systems to be considered by test providers, including test designers and test engineers. It also gives guidance for spacecraft designers and interested parties. The spacecraft level micro-vibration test is applicable to space systems which contain payload equipment sensitive to the micro-vibration environment which only induced by the internal disturbance sources on-orbit, e.g. for the purpose of earth observation, space telescopes, optical experiments, telecommunication.

  • Standard
    22 pages
    English language
    sale 15% off

This standard addresses the requirements for performing verification by testing of space segment elements and space segment equipment on ground prior to launch. The document is applicable for tests performed on qualification models, flight models (tested at acceptance level) and protoflight models.
The standard provides:
• Requirements for test programme and test management,
• Requirements for retesting,
• Requirements for redundancy testing,
• Requirements for environmental tests,
• General requirements for functional and performance tests,
NOTE Specific requirements for functional and performance tests are not part of this standard since they are defined in the specific project documentation.
• Requirements for qualification, acceptance, and protoflight testing including qualification, acceptance, and protofight models’ test margins and duration,
• Requirements for test factors, test condition, test tolerances, and test accuracies,
• General requirements for development tests pertinent to the start of the qualification test programme,
NOTE Development tests are specific and are addressed in various engineering discipline standards.
• Content of the necessary documentation for testing activities (e.g. DRD).
Due to the specific aspects of the follow ing types of test, this Standard does not address:
• Space system testing (i.e. testing above space segment element), in particular the system validation test,
• In-orbit testing,
• Testing of space segment subsystems,
NOTE Tests of space segment subsystems are often limited to functional tests that, in some case, are run on dedicated models. If relevant, qualification tests for space segment subsystems are assumed to be covered in the relevant discipline standards.
Testing of hardware below space segment equipment levels (including assembly, parts, and components),
• Testing of stand-alone software,
NOTE For verification of flight or ground softw are, EN 16603-40 (ECSS-E-ST-40) and EN 16602-80 (ECSS-Q-ST-80) apply.
• Qualification testing of tw o-phase heat transport equipment,
NOTE For qualification testing of tw o-phase heat transport equipment, EN 16603-31-02 (ECSS-E-ST-31-02) applies.
• Tests of launcher segment, subsystem and equipment, and launch facilities,
• Tests of facilities and ground support equipment,
• Tests of ground segment.
This activity will be the update of EN16603-10-03:2014
NOTE: Parallel development of update of EN Standard and the new European TR17603-10-03.

  • Standard
    132 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    127 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EMC policy and general system requirements are specified in ECSS-E-ST-20 (equivalent to EN 16603-20).
This ECSS-E-ST-20-07 (equivalent to EN 16603-20-07) Standard addresses detailed system requirements (Clause 4), general test conditions, verification requirements at system level, and test methods at subsystem and equipment level (Clause 5) as w ell as informative limits (Annex A).
Associated to this standard is ECSS-E-ST-20-06 (equivalent to EN 16603-20-06) "Spacecraft charging", w hich addresses charging control and risks arising from environmental and vehicle-induced spacecraft charging w hen ECSS-E-ST-20-07 addresses electromagnetic effects of electrostatic discharges.
Annexes A to C of ECSS-E-ST-20 document EMC activities related to ECSS-E-ST-20-07: the EMC Control Plan (Annex A) defines the approach, methods, procedures, resources, and organization, the Electromagnetic Effects Verification Plan (Annex B) defines and specifies the verification processes, analyses and tests, and the Electromagnetic Effects Verification Report (Annex C) document verification results. The EMEVP and the EMEVR are the vehicles for tailoring this standard.

  • Standard
    103 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    100 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document specifies the multiple measurement methods, instruments, equipment, and samples used to calculate the thermo-optical properties of thermal control materials. This document compares their features, indicates their limitations and biases, and guides the applications. This document also defines requirements for calibration and reference materials to ensure data quality. This document specifies the following test methods, including the configuration of samples and calculations. a) Solar absorptance using a spectrophotometer (αs) — Annex A. b) Solar absorptance using the comparative test method (αp) — Annex B. c) Hemispherical infrared emittance using the thermal test method (εh-t) — Annex C. d) Normal infrared emittance using an IR spectrometer (εn-s) — Annex D. e) Normal infrared emittance using ellipsoid collector optics (εn-e) — Annex E. f) Normal infrared emittance using two rotating cavities (εn-c) — Annex F.

  • Standard
    37 pages
    English language
    sale 15% off

This handbook provides additional information for the application of the Testing standard EN 16603-10-03.
This handbook will be the guideline for all space projects, related equipment and complete systems, by providing background information that aids the reader to better understand and meet the requirements of the standard.
The document would follow the flow of the Testing standard and in particular w hatever is excluded from the testing standard (see Scope of EN 16603-10-03) should also be excluded.
NOTE: EN 16603-10-03:2014 will be in parallel also updated to take into account the new TR.

  • Technical report
    267 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    265 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This handbook provides additional information for the application of the Testing standard EN 16603-10-03.
This handbook will be the guideline for all space projects, related equipment and complete systems, by providing background information that aids the reader to better understand and meet the requirements of the standard.
The document would follow the flow of the Testing standard and in particular w hatever is excluded from the testing standard (see Scope of EN 16603-10-03) should also be excluded.
NOTE: EN 16603-10-03:2014 will be in parallel also updated to take into account the new TR.

  • Technical report
    267 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    265 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This Standard specifies the requirements for the development of the end­to­end data communications system for spacecraft.
Specifically, this standard specifies:
-   The terminology to be used for space communication systems engineering.
-   The activities to be performed as part of the space communication system engineering process, in accordance with the ECSS-E-ST-10 standard.
-   Specific requirements on space communication systems in respect of functionality and performance.
The communications links covered by this Standard are the space­to­ground and space­to­space links used during spacecraft operations, and the communications links to the spacecraft used during the assembly, integration and test, and operational phases.
Spacecraft end­to­end communication systems comprise components in three distinct domains, namely the ground network, the space link, and the space network. This Standard covers the components of the space link and space network in detail. However, this Standard only covers those aspects of the ground network that are necessary for the provision of the end­to­end communication services.
NOTE    Other aspects of the ground network are covered in ECSS-E ST 70.
This Standard may be tailored for the specific characteristics and constraints of a space project in conformance with ECSS-S ST 00.

  • Standard
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    79 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 231.0-B-3, TC Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    16 pages
    English language
    sale 10% off
    e-Library read for
    1 day

In the standard CCSDS 132.0-B-2, TM Space Data Link Protocol, CCSDS specifies a data link layer protocol for the
efficient transfer of space application data of various types and characteristics over space links.
This Adoption Notice adopts and applies CCSDS 132.0-B-2 w ith a minimum set of modifications, identified in the present
document, to allow for reference and for a consistent integration in the ECSS system of standards.
The TM Transfer Frame specified in CCSDS 132.0-B-2 is similar to the TM Transfer Frame specified in the EN 16603-50-
03:2014 (ECSS-E-ST-50-03), that is superseded by the follow ing tw o Adoption Notices: EN 16603-50-22 (ECSS-E-AS-
50-22) and EN 16603-50-23 (ECSS-E-AS-50-23).
Differences betw een these tw o standards that are not covered by the normative modifications in clause 4 are described in
the informative Annex A.

  • Standard
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    12 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standard CCSDS 732.0-B-3, AOS Space Data Link Protocol, Issue 3, September 2015 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified w ith respect to the standard CCSDS 131.0-B-3, TM Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    19 pages
    English language
    sale 10% off
    e-Library read for
    1 day

EN 16603-50-21 identifies the clauses and requirements modified with respect to the standard CCSDS 131.0-B-3, TM Synchronization and Channel Coding, Issue 3, September 2017 for application in ECSS.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day

This document identifies the clauses and requirements modified with respect to the standards CCSDS 232.1-B-2, Communications Operation Procedure-1, Issue 2, September 2010 for application in ECSS.
NOTE The recently published technical corrigendum has modified CCSDS 232.1-B-2. However, the changes are not affecting the Adoption Notice.

  • Standard
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day
  • Draft
    11 pages
    English language
    sale 10% off
    e-Library read for
    1 day